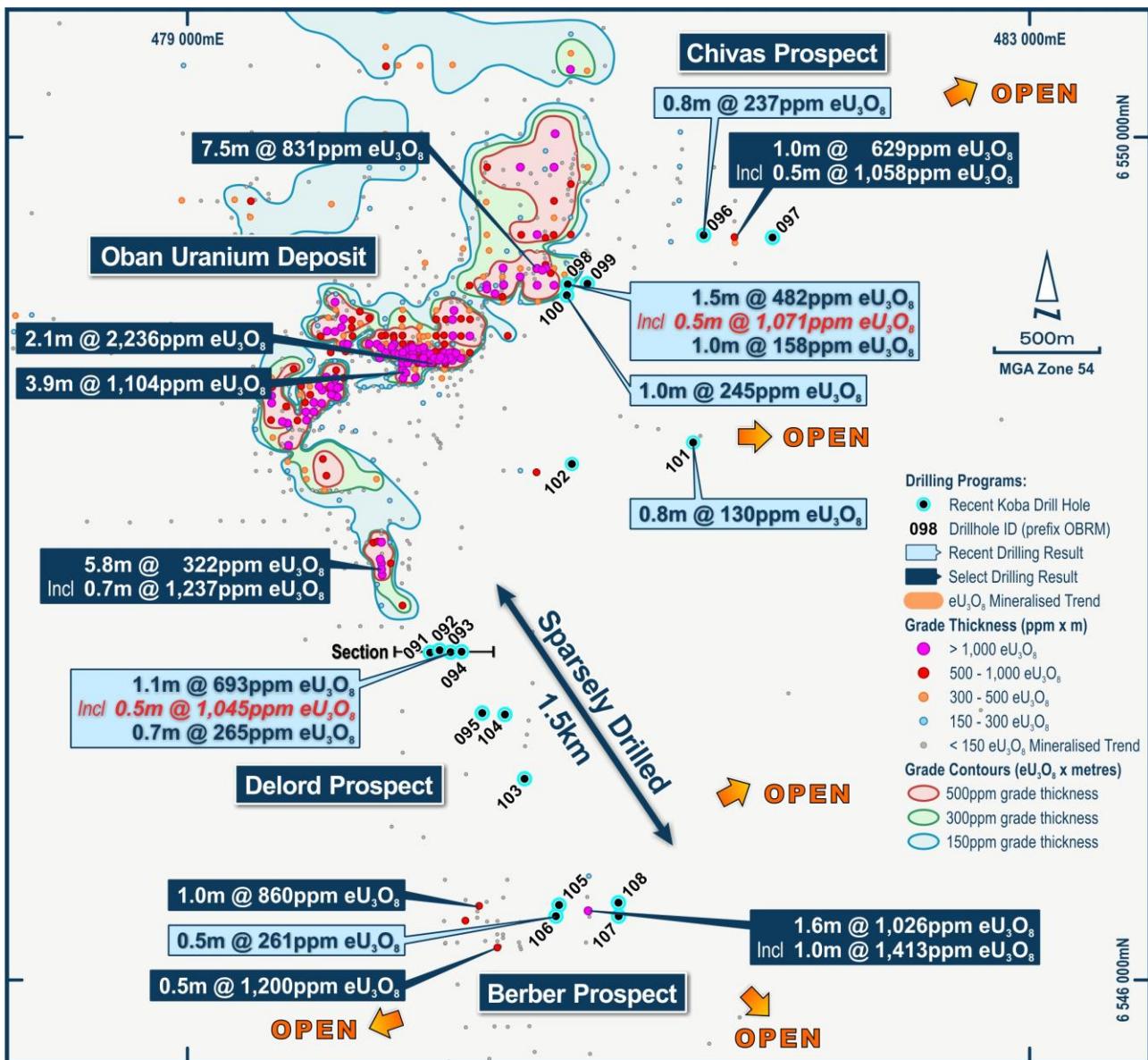


New High-Grade Prospect Discovered with Drill Intercepts >1,000ppm eU₃O₈


Highlights

- ◆ Koba has discovered a new high-grade prospect during initial follow-up drilling at its Yarramba Uranium Project in South Australia.
- ◆ Significant intercepts >1,000ppm eU₃O₈ returned from step-out drilling, including:
 - 1.07m @ 693ppm eU₃O₈ from 88.4m (at the new Delord Prospect);
 - *including 0.53m @ 1,045ppm eU₃O₈; and*
 - 1.52m @ 482ppm eU₃O₈ from 86.5m;
 - *including 0.52m @ 1,071ppm eU₃O₈;*
- ◆ High-grade mineralisation remains open along strike at both the Delord and Chivas Prospects.
- ◆ Significant uranium mineralisation was intersected at all targets tested as part of initial step-out exploratory drilling.
- ◆ Koba's continuing exploration success demonstrates the considerable potential to discover additional high-grade uranium throughout the >250km of palaeochannels within the Yarramba Project.
- ◆ Koba is progressing its plans to undertake further follow-up drilling at Yarramba in the coming months.

Koba's Managing Director and CEO, Mr Ben Vallerine, commented:

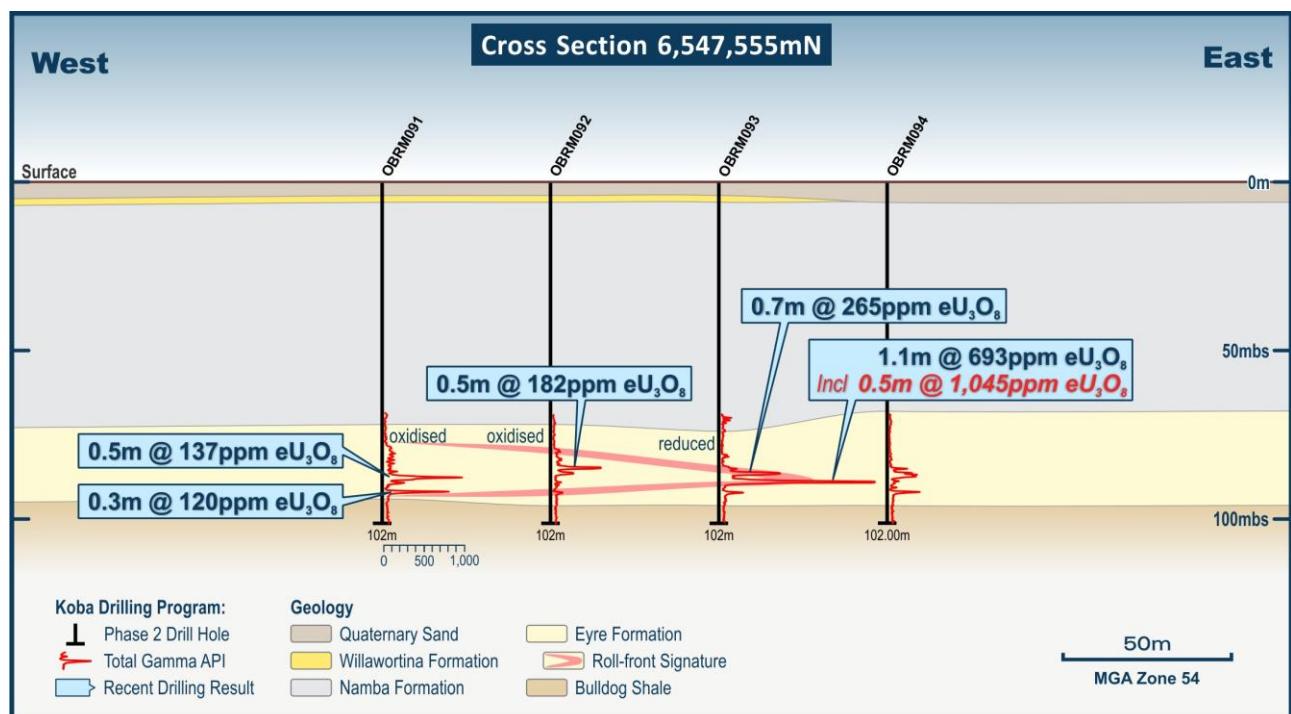
"We are very pleased to have discovered another high-grade prospect during our recent step-out exploratory drilling program at our Yarramba Uranium Project in South Australia. Our drilling continues to intersect uranium grades >1,000ppm eU₃O₈ and has demonstrated that high-grade mineralisation occurs in the underexplored 1.5km corridor between the Oban Deposit and Berber Prospect – now called the Delord Prospect.

"Our team has also identified a roll-front signature at Delord which provides valuable geological information about the location of uranium mineralisation. This allows us to refine our drill targeting to maximise success – an important breakthrough in understanding the mineralisation in the greater Oban region".

Figure 1 Drill hole location plan of greater Oban area including the recently discovered Delord Prospect.

Koba Resources Limited (ASX:KOB; “Koba” or the “Company”) is pleased to report that it has discovered a new high-grade prospect during the recent follow-up drilling campaign at its Yarramba Uranium Project (“**Yarramba Project**”) in South Australia.

During September 2025, the Company completed an initial step-out, exploratory drilling campaign comprising 18 drill holes (for 1,818m) to follow-up on the high-grade discoveries made during its 2024-25 drilling campaign at the Berber and Chivas Prospects (see Figure 1). The recent program has been highly successful as it has resulted in the identification of a new prospect that hosts high-grade mineralisation and associated roll-front signatures.


The Company continues to be very encouraged by the results from its drilling programs which continue to demonstrate the considerable potential to discover additional high-grade uranium mineralisation throughout the 250km of interpreted palaeochannels within the 5,000km² Yarramba Project.

Delord Prospect

Drilling at the newly defined Delord Prospect successfully demonstrated the presence of high-grade uranium mineralisation within the 1.5km-long corridor between the Oban Deposit and the Berber Prospect. Significant results from recent drilling in this corridor included:

- **1.07m @ 693ppm eU₃O₈ from 88.4m (OBRM093);**
 - *including 0.53m @ 1,045ppm eU₃O₈; and*
- **0.7m @ 265ppm eU₃O₈ from 86.1m (OBRM093).**

The four drillholes on the northern drill section at Delord (OBRM091 through OBRM094) intersected uranium anomalism (gamma peaks) that revealed an exemplar roll-front signature comprising high-grades >1,000ppm eU₃O₈, in the nose of the roll front within the mineralised redox zone in OBRM093 (see Figure 2). This roll-front signature provides valuable information about the location of the uranium mineralisation and will aid in drill targeting going forward.

Figure 2 West-east cross section through the Delord Prospect showing the roll-front signature that contains high-grade mineralisation, >1,000ppm eU₃O₈, in the 'nose' of the roll front.

Chivas Prospect

Five holes were drilled targeting the 700m-long corridor between the Oban Deposit and Chivas Prospect. Several of the drillholes intersected thick, >5m zones, of anomalous uranium mineralisation. These included intersections of high-grade mineralisation >1,000ppm eU₃O₈. Significant results included:

- **1.52m @ 482ppm eU₃O₈ from 86.5m (OBRM098);**
 - *including 0.52m @ 1,071ppm eU₃O₈;*
- **1.02m @ 245ppm eU₃O₈ from 88.8m (OBRM100); and**
- **0.77m @ 237ppm eU₃O₈ from 86.4m (OBRM096).**

These recent results will assist the Company plan further drilling to test for extensions of the high-grade uranium mineralisation within this target area.

Berber Prospect

Four drill holes were completed to target extensions of the high-grade mineralisation discovered during the 2024-25 drill program. Significant drill results from Berber included:

- **0.46m @ 261ppm eU₃O₈ from 89.3m (OBRM106).**

Further drilling is being planned.

Target Four

Two holes were drilled to test a conceptual target east of the Oban Deposit where limited historical drilling had intersected a coherent, strong gamma peak. The results from the recent drilling were very encouraging, as they confirmed the presence of uranium mineralisation that warrants further exploration. Significant drill results included:

- **0.83m @ 130ppm eU₃O₈ from 88.8m (OBRM101)**

Conclusion

The Company continues to deliver strong results from its staged drilling programs at the Yarramba Project. Additional high-grade mineralisation has been discovered during a short drilling program completed during September 2025. These highly encouraging results confirm the considerable potential to discover additional high-grade mineralisation within the Company's Yarramba Project, which covers 5,000km² and includes >250km of interpreted, but largely underexplored palaeochannels.

Forward Work Plan

Koba has significantly advanced its understanding of the controls on uranium mineralisation through its recent drill program. Koba is now leveraging this knowledge to re-assess historical data with the aim of mapping roll-front signatures which will support the delineating and refinement of future drill targets.

The Company is also progressing plans to undertake another follow-up drill program in the coming months that would:

- Test the strike extensions of the high-grade mineralisation discovered at the Delord Prospect. Continuing success along this sparsely drilled 1.5km corridor has the potential to link the high-grade mineralisation at the Oban Deposit to that at the Berber Prospect.
- Continue to test the 700m corridor between the Oban Deposit and the Chivas Prospect and to target potential northeast extensions of the high-grade mineralisation intersected in the 2024-25 drill program that included **1.0m @ 629ppm eU₃O₈ including 0.5m @ 1,028ppm eU₃O₈**.
- Follow-up drilling at the high-grade Berber Prospect, to continue targeting the strike extensions of the high-grade mineralisation intersected in the 2024-25 program that included a significant intersection of **1.6m @ 1,026ppm eU₃O₈**.

Requisite permits and approvals are now being obtained in advance of commencing a circa 2,000m follow-up drill program.

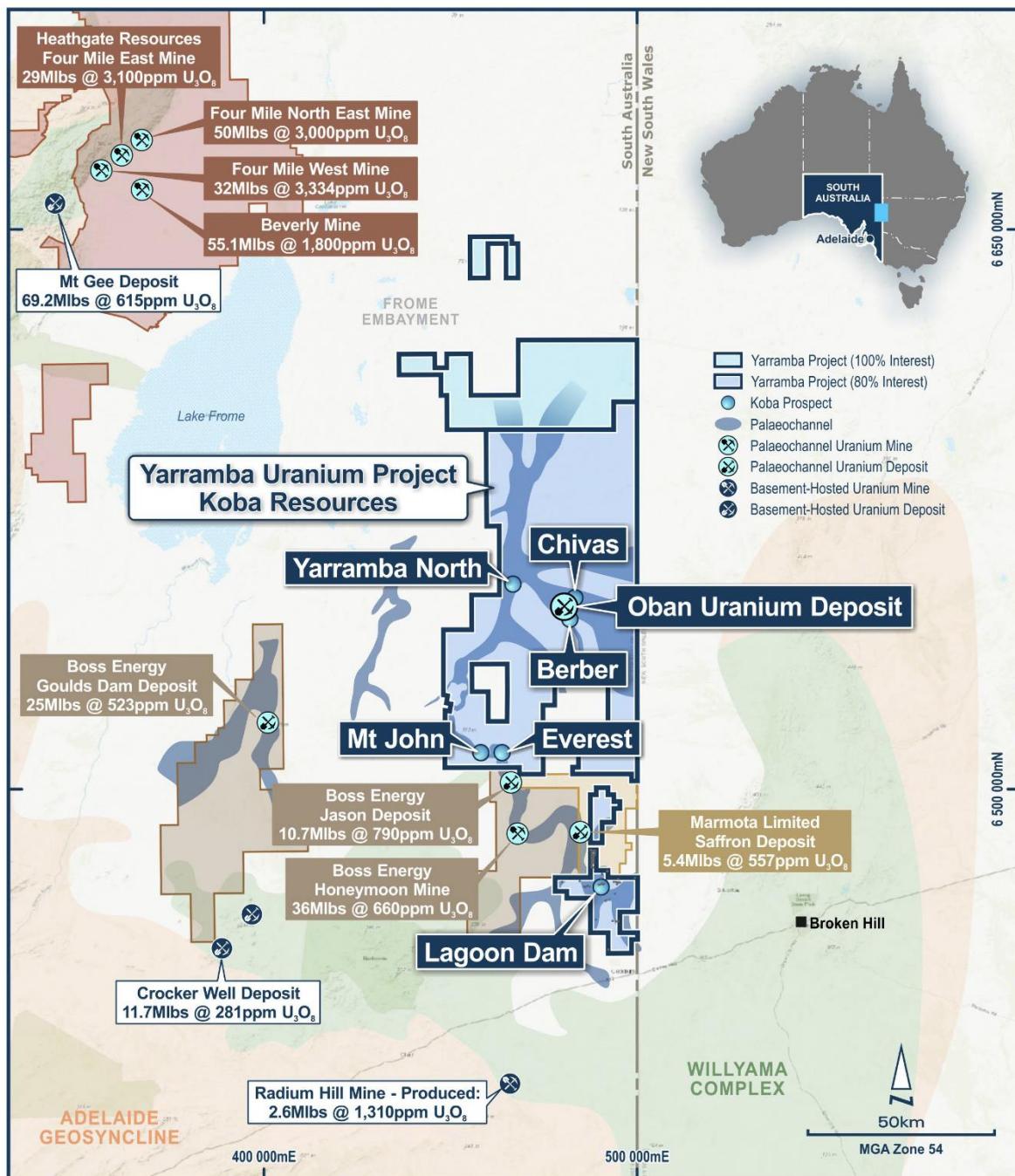
Photo 1 The drill rig in action during September 2025 at the recently discovered Delord Prospect.

This announcement has been authorised for release by the Board.

For more information, please contact:

Ben Vallerine
Managing Director & CEO
Phone +61 8 9226 1356
info@kobaresources.com.au

Alex Cowie
Investor Relations
Mobile + 61 412 952 610
alexc@nwrcommunications.com.au


Competent Persons Statement:

The information in this announcement that relates to exploration results is based on, and fairly reflects, information compiled and/or reviewed by Mr Ben Vallerine, who is Koba Resources' Managing Director. Mr Vallerine is a Member of the Australian Institute of Geoscientists. Mr Vallerine has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results and Mineral Resources (JORC Code). Mr Vallerine consents to the inclusion in the announcement of the matters based on the information in the form and context in which it appears.

Past exploration results disclosed in this report have been previously prepared and disclosed by the Company in accordance with JORC 2012 in ASX announcements 22 January 2024 Transformational Acquisition of the Advanced Yarramba Uranium Project in South Australia, 30 January 2024 Koba Expands its Yarramba Uranium Project in South Australia, 4 September 2024 High-Grade Mineralisation Intersected at the Yarramba Uranium Project, 8 October 2024 Strong Drilling Results Continue at the Yarramba Uranium Project, 13 November 2024 Uranium Mineralisation Identified at Two New Areas as Strong Results Continue at the Yarramba Uranium Project, 12 December 2024 High Grade Results Demonstrate the Significant Potential of the Underexplored Berber and Chivas Prospects, 23 January 2025 Strong Mineralisation Returned from the First Phase of Drilling at the Underexplored Mt John Prospect and 11 March 2025 New Discovery – With Multiple Drill Intercepts >1,000ppm eU₃O₈ over 4km of Strike. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statements

Any forward-looking information contained in this announcement is based on numerous assumptions and is subject to all of the risks and uncertainties inherent in the Company's business, including risks inherent in mineral exploration and development. As a result, actual results may vary materially from those described in the forward-looking information. Readers are cautioned not to place undue reliance on forward-looking information due to the inherent uncertainty thereof.

Figure 3 Yarramba Uranium Project within a world-class uranium district in South Australia.¹²³⁴⁵⁶

¹ ASX:BOE – Boss Energy Annual Report 2023

² <https://www.world-nuclear.org/information-library/country-profiles/countries-a-f/appendices/australia-s-uranium-mines.aspx>

³ ASX:MEU – Marmota to grow Junction Dam Uranium resource. 26 October 2023

⁴ SA Geodata Database – Mineral Deposit Details Mt Gee (4322)

⁵ SA Geodata Database – Mineral Deposit Details Crocker Original (991)

⁶ SA Geodata Database – Mineral Deposit Details Radium Hill (962)

Table 1. Drill collar information and significant uranium intersections from the follow-up drilling program completed during September 2025 including drill holes OBRM091 to OBRM108.

Hole Id	Prospect	Easting	Northing	RL	Az	Dip	Total Depth (m)	From (m)	To (m)	Interval (m)	Grade eU ₃ O ₈ (ppm)	Grade Thickness (ppm.m)	Peak Grade eU ₃ O ₈ (ppm)
OBRM091*	Delord	480153	6547554	68	0	-90	102	87.46	87.92	0.46	137	63	197
and*								91.72	92.06	0.34	120	41	156
OBRM092*	Delord	480198	6547565	68	0	-90	102	84.6	85.06	0.46	182	84	298
OBRM093	Delord	480250	6547556	69	0	-90	102	86.13	86.83	0.7	265	186	604
and								88.39	89.46	1.07	693	741	1,794
<i>including</i>								88.67	89.2	0.53	1,045	554	1,794
OBRM094	Delord	480302	6547558	69	0	-90	102	No significant results					
OBRM095	Delord	480397	6547267	70	0	-90	102	No significant results					
OBRM096	Chivas	481452	6549535	69	0	-90	96	86.41	87.18	0.77	237	182	429
OBRM097	Chivas	481779	6549524	69	0	-90	90	No significant results					
OBRM098	Chivas-Oban	480806	6549302	67	0	-90	102	84.96	86.48	1.52	482	732	2,091
<i>including</i>								85.14	85.66	0.52	1,071	557	2,091
and								87.81	88.79	0.98	158	154	310
and*								89.54	89.66	0.12	103	12	143
and*								91.92	92.07	0.15	116	17	135
OBRM099*	Chivas-Oban	480900	6549305	67	0	-90	102	87.36	87.78	0.42	99	41	128
OBRM100	Chivas-Oban	480802	6549250	67	0	-90	102	87.2	87.88	0.68	187	127	383
and								88.75	89.77	1.02	245	250	597
and								90.22	91.14	0.92	147	135	203
and								93.56	94.35	0.79	166	131	328
OBRM101	Target 4	481402	6548551	69	0	-90	96	88.8	89.63	0.83	130	108	194
OBRM102	Target 4	480826	6548449	70	0	-90	102	No significant results					
OBRM103	Delord	480601	6546955	72	0	-90	102	No significant results, gamma displays western edge of roll-front signature					
OBRM104	Delord	480508	6547260	71	0	-90	102	No significant results					
OBRM105	Berber	480765	6546356	75	0	-90	108	No significant results					
OBRM106	Berber	480750	6546303	75	0	-90	102	89.25	89.71	0.46	261	120	426
OBRM107	Berber	481048	6546303	77	0	-90	102	No significant results, gamma displays eastern edge of roll-front signature					
OBRM108	Berber	481047	6546367	77	0	-90	102	No significant results, gamma displays eastern edge of roll-front signature					

Notes:

Significant intersections calculated using a cut-off grade of 100ppm eU₃O₈ over a minimum thickness of 0.5m.

Intercepts described as “including” use a higher cut-off with no specific grade or thickness parameters.

*Does not pass minimum thickness requirements above but included in the table.

Easting and Northing values are in UTM GDA94 Zone 54.

All holes were successfully logged open hole.

Appendix 1

JORC Table 1 for Exploration Results – Yarramba Uranium Project

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> The downhole geophysical logging was completed by an independent contractor, Borehole Wireline Pty Ltd. Downhole data was collected at 1cm intervals. Open holes were logged using calibrated gamma, dual laterolog, SP, induction and magnetic deviation. All holes reported were logged open hole. All U_3O_8 values from Koba's drilling are calculated from downhole gamma logs and are therefore equivalent U_3O_8 (eU_3O_8).
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> The drilling technique used was mud rotary. Drill cuttings were collected at 2m intervals and laid out on a plastic sheet for geological logging.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> Drill chips were collected in chip trays and photographed to be kept as a geological record of the samples. Sample recoveries are irrelevant when using gamma logging to calculate eU_3O_8 values. However, sample recoveries were generally deemed to be good and showed a true representation of the lithologies.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> The wet chip samples returned from mud rotary are laid out on builders plastic in order at 2m intervals. 100% of the hole was qualitatively logged by a geologist. Drill samples were photographed using a high-quality digital camera showing samples laid out in order. An aliquot of the sample was also collected in a chip tray and photographed.
Sub-sampling techniques	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled,</i> 	<ul style="list-style-type: none"> Samples were analysed using the gamma probe data from downhole geophysical logging.

Criteria	JORC Code explanation	Commentary
and sample preparation	<p><i>rotary split, etc and whether sampled wet or dry.</i></p> <ul style="list-style-type: none"> • <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> • <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> • <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> • Rotary mud samples are typically collected at the collar and are not fully representative of the interval drilled and are often not suitable for assay. • No samples were collected for chemical assays at a laboratory.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> • <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> • The gamma probes used in the downhole logging campaign were specifically calibrated at the Adelaide Models, South Australia for equivalent U_3O_8 grade for Koba's project. The probe calibration utilised Models AM1, AM2, AM3 and AM7 and were performed in December 2024. Borehole diameter corrections and in-rod drill rod corrections have been applied where appropriate, dependant on the logging conditions, using Borehole Wireline's internal correction database with contributions from the specific equipment used onsite during this program.
Verification of sampling and assaying	<ul style="list-style-type: none"> • <i>The verification of significant intersections by either independent or alternative company personnel.</i> • <i>The use of twinned holes.</i> • <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> • <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> • The gamma data has been collected by an independent contractor onsite and verified by the Koba geologist. • Data is provided to the Company in a secured digital format.
Location of data points	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> • Drillhole collar locations were identified using a handheld Garmin GPS with an accuracy of +/- 5m. • Drill collars have been recorded using the GDA94, z54 coordinate system.
Data spacing and distribution	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> • The Company is not quoting a resource based on these drill results at this time. • Data spacing is not relevant at this stage of exploration and is highly variable. • The drill spacing in the historic drilling is highly variable. At the Oban Uranium Deposit the historic drill spacing is likely of sufficient density to support a resource calculation in the future. • The central portion of the Oban Uranium Deposit is predominantly drilled on 25m centres but can have closer spaced drilling to identify the REDOX interfaces on the edges of the

Criteria	JORC Code explanation	Commentary
		<p>palaeochannels.</p> <ul style="list-style-type: none"> • Drill spacing around the edges of the Oban Uranium Deposit to identify new mineralised regions will be expected to be 100m plus. • eU_3O_8 values are calculated at 1cm intervals, the logging contractor provides 10cm composited intervals as standard practice. • Grades have been calculated using a 100ppm cutoff over a minimum thickness of 0.5m.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> • All holes were drilled vertically which is appropriate as the mineralisation is interpreted to be contained within flat-lying or sub-horizontal sedimentary beds. • There is no expected bias due to drill orientations.
Sample security	<ul style="list-style-type: none"> • The measures taken to ensure sample security. 	<ul style="list-style-type: none"> • The reported uranium values are calculated from gamma logging therefore sample security is not an issue. • Chip trays collected from each drillhole are locked away on site at the Oban exploration camp.
Audits or reviews	<ul style="list-style-type: none"> • The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> • All historical information and data used in this report has been reviewed by Koba's competent person and has been deemed appropriate for release.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> • Koba has entered into a Tenement Access and Mineral Rights Agreement (TAMRA) with Havilah Resources, pursuant to which it has the right to acquire an 80% joint venture interest in the Cenozoic hosted uranium rights within all or part of 17 tenements in South Australia. • Havilah will remain the title holder of each tenement and Koba will work with them on all tenement governance including annual technical reporting, tenement administration and heritage access agreements. • Drilling is conducted under a program for environment protection and rehabilitation (PEPR) approval from the South Australian Department for Energy and Mining (DEM). • Havilah have all the heritage agreements in place that cover Koba's JV tenements.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Koba has undertaken two heritage surveys with one native title group in order to conduct the September 2025 drilling program.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> 8 companies have undertaken previous drilling for uranium within the Project. Koba's working database currently contains 1,861 historic drill holes for 185,411m drilled specifically for uranium. Multiple geophysical surveys have been undertaken over portions of the Project by multiple companies.
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The Frome Basin is host to multiple (Cenozoic), sandstone-hosted uranium deposits including Koba's Oban Uranium Deposit. The deposits vary from tabular to roll front style uranium deposits commonly hosted in palaeochannels. Mineralisation is post-deposition of the sands. Groundwater becomes enriched in uranium due to passing through/over uraniferous basement rocks. Uraniferous, oxygenated groundwater then moves through the sands and when it hits a reductant the uranium precipitates. The reductant is commonly organic matter from decaying vegetation or pyrite.
<i>Drill hole Information</i>	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> Please refer to Table 1 for drill collar information from the recently completed drilling.
<i>Data aggregation methods</i>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should</i> 	<ul style="list-style-type: none"> Mineralised intervals were selected using a nominal 100ppm eU₃O₈ cutoff over a minimum thickness of 0.5m. In some cases where small gaps occurred between the selected intervals an intersection incorporating internal dilution has also been reported. Gamma data used to determine the eU₃O₈ grades may be affected by

Criteria	JORC Code explanation	Commentary
	<p><i>be shown in detail.</i></p> <ul style="list-style-type: none"> • <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<p>radiometric disequilibrium.</p> <ul style="list-style-type: none"> • There have been no disequilibrium correction factors applied to the eU₃O₈ data collected from the recently completed drilling at this stage. • Previous unvalidated work indicates that disequilibrium is unlikely to be a negative factor.
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> • <i>These relationships are particularly important in the reporting of Exploration Results.</i> • <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> • <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> • Mineralised widths are considered to be true widths based on the general flat-lying sedimentary beds and associated mineralisation due to the vertically orientated drilling method.
<i>Diagrams</i>	<ul style="list-style-type: none"> • <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> • A map of all new drill holes reported is included within the body of the report. • A tabulation of all new intercepts on maps or referred to in the announcement is summarised in Table 1. • A single cross-sectional view is included in the body of the announcement. The geology of the Tertiary channel is very consistent and flat lying in the vicinity of the recent drilling. Therefore, one section was considered appropriate and representative of the geology reported in this announcement.
<i>Balanced reporting</i>	<ul style="list-style-type: none"> • <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> • All drillholes reported in this release have mineralisation data if the mineralisation meets the cut-off requirements. If there is no mineralisation above the cut-off only the collar details are reported.
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> • <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> • The majority of the work within the Yarramba Project is drilling. • Multiple geophysical surveys have been completed by previous companies, various methods including EM, magnetics and gravity to map out the general palaeovalley shape.
<i>Further work</i>	<ul style="list-style-type: none"> • <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> • <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> • The Company is making plans for further drilling later in 2025 / 2026. • Technical reviews are ongoing to generate additional drill targets, specifically targeting high-grade mineralisation associated with redox zones of roll-front signatures at Oban and its surrounds, to drill test in 2025 / 2026.