ASX Announcement 17th October 2025

DISSEMINATED TO MASSIVE SULPHIDES INTERSECTED IN OONAGALABI VT2 TARGET, EXTENDING STRIKE LENGTH

Highlights

- **Disseminated, semi-massive and massive sulphides** sporadically intersected between 180m and 291m in drillhole OGRC011, testing the VT2 conductor.
- Sulphide assemblage of **pyrrhotite**, **chalcopyrite**, **sphalerite** and pyrite OGCRC011 is hosted exclusively within mafic intrusive rocks and may represent a different style of mineralisation than seen at the main Oonagalabi prospect.
- The VT2 conductor represents a large VTEM plate modelled at ~150m depth with a strike length of over 500m.
- Similar mafic-hosted mineralisation also observed at depth at Oonagalabi (drillhole OGRC010) and at Bomb-Diggity cluster (to 48m in drillhole OGRC009). Source of the parent intrusion unknown, however, interpreted to be the large intrusion at Bomb-Diggity.
- Drilling now moving to test **VTEM target VT1**, a very strong, +400m long conductor (up to 700 Siemens) associated with gold-silver-copper-tellurium mineralisation in surface gossan, a further 6kms to the southwest from VT2.
- Downhole Electromagnetic (**DHEM**) survey to commence next week to model the position of the conductor and vector into further mineralisation with follow-up drilling.
- Total prospective strike length has now been extended by a further 1 km along strike from Bomb Diggity, the system now exceeds 4km strike.

Oonagalabi Project - Drilling Update

Litchfield Minerals Limited (ASX: LMS) ("Litchfield" or "the Company") is excited to provide an update on its ongoing reverse circulation (RC) drilling program at the Oonagalabi Project in the Northern Territory.

Drilling of hole OGRC011 intersected disseminated to semi massive & massive sulphides targeting the modelled VTEM conductor at VT2, located 2km east of the main Oonagalabi mineralised zone (Table 1, Figures 1 and 2, Appendix 1). The target was defined by a late-time VTEM anomaly interpreted to represent a highly conductive zone with a strike length exceeding 500m.

Hole_ID	Planned Hole ID	Prospect	Hole_Type	Max_Depth	Orig_Grid_ID	Orig_East	Orig_North	Orig_RL	Orig_Dip	Orig_Azi	TN_Azi
OGRC011	OGRC012P	Pink Panther	RC	348	GDA94_53	487137	7442131	869	-50	142	148

Table 1. OGRC011 collar information.

Drilling in OGRC011 intersected a mixed sequence of felsic gneiss and mafic amphibolite (intrusive) with disseminated to massive sulphides sporadically observed between 180m and 291m. The sulphide

assemblage comprises pyrrhotite, chalcopyrite, sphalerite and pyrite and is consistent with the sulphide assemblage seen within the main zone at Oonagalabi. Sulphide mineralisation within OGRC011 is hosted exclusively within mafic amphibolite intrusive rocks. The carbonate-rich Oonagalabi Formation, and main host to high-grade mineralisation at Oonagalabi, was not observed in OGRC011 and it is not clear whether it is present at the VT2 prospect.

The 168m zone of disseminated sulphides contains two intervals that host semi-massive to massive sulphides (199 - 204m and 246 - 256m). Total observable sulphides within these two intervals average approximately **10% visual sulphides**¹ with most sulphides contained within narrow zones of semi-massive to massive sulphides.

The upper sulphide zone (199-204m) is dominated by a pyrrhotite-chalcopyrite \pm sphalerite sulphide assemblage and the lower zone (246-256m) contains equal proportions of pyrrhotite, chalcopyrite and sphalerite. OGRC011 demonstrates that the large VT2 conductor hosts zones of massive sulphides, and most importantly, these zones contain Cu and Zn mineralisation based on the sulphide minerals.

-

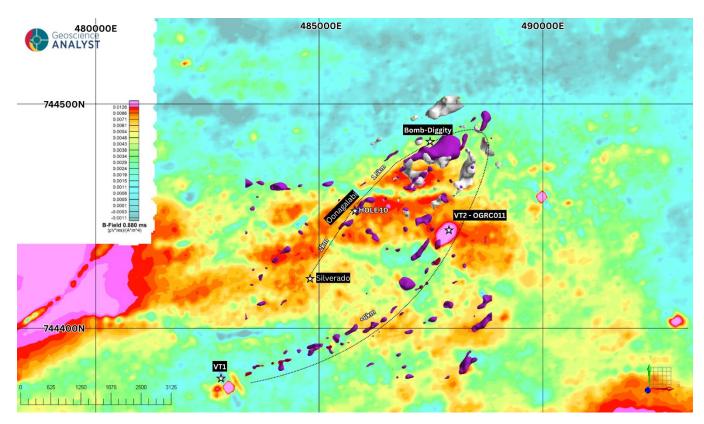
¹ Note: Visual estimates of mineral abundance results should never be considered a proxy or substitute for laboratory analyses where concentrations of grades are the factors of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuation.

Figure 1. Semi-massive to massive sulphides from OGRCO11 (249m), estimates comprising 4% pyrrhotite, 4% chalcopyrite and 3% sphalerite. Note: Visual estimates of mineral abundance results should never be considered a proxy or substitute for laboratory analyses where concentrations of grades are the factors of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuation. Assays are expected in 4 weeks time.

Commentary from Managing Director Matthew Pustahya

"The VT2 intersections mark a major milestone for Litchfield at Oonagalabi. Remember, target VT2 was drilled with a proof-of-concept hole (OGRC011), with the pad being positioned sub-optimally due to the small D6 dozer and the challenging rugged terrain, yet we're already seeing what matters, chalcopyrite and sphalerite in both disseminated and massive textures aligned with a strong 500m + VTEM response.

That combination of observations and VTEM anomaly strongly supports system scale and indicated we're vectoring toward the core of a large, mineralised system.



The VT2 conductor extends the previously defined mineralised strike by $^{\sim}1$ km, taking the broader system to at least +4km, and we're still growing it. Most juniors dream of one VTEM conductor or area that turns out to host meaningful sulphides; we have now identified two in this campaign with multiple more targets to test. The breadth of targets allows us to be precise, as such we've fast-tracked DHEM at VT2 to lock in the plate and refine our drilling plan before the next hole.

Next up, we're moving the rig to VT1, a very large conductor, with up to a 3 x higher-conductance than VT2, with precious-metal-bearing gossans at surface and strong potential for sulphides. Every visit to Oonagalabi pushes the footprint out. Textbook big-system behaviour and now we've confirmed sulphide-bearing conductors across the corridor.

We'll continue to use pXRF internally to support visual observations, but in line with market and regulatory expectations, we won't be publishing pXRF results and will instead report certified assays once received.

It might take some time to fully understand this system, but the team is incredibly excited about what we're seeing and confident we're onto something special."

Figure 2. Highlighting the interpreted folded mineralised corridor, showing confirmed mineralisation at Silverado, Oonagalabi, the southern extent of the Bomb Diggity cluster, and now the VT2 conductor.

VTEM modelling success

OGRC011 was drilled as a proof-of-concept hole to validate the potential of the modelled conductor to host sulphide mineralisation and then to test the plate modelling accuracy. The target was completely blind with surface evidence limited to sporadic distribution of 'Zinc Bush' (*Goodenia Ramelii*) and weakly-developed calc-silicate alteration in felsic gneiss. The VT2 is therefore a 100% preserved system with no evidence for erosion.

The main mineralised zone in OGRC011 (246 - 256m) is where it was predicted from the modelled VTEM conductor plate (250m downhole). The hole unfortunately dropped 10° from the collar to end of hole (-50° to -60°) resulting in mineralisation being intersected in the lower third and periphery of the modelled conductor plate (**Figure 3**).

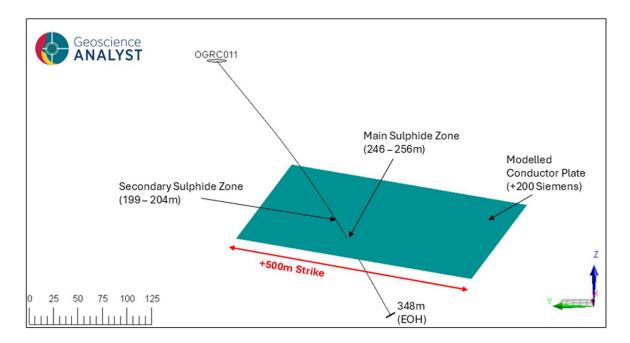
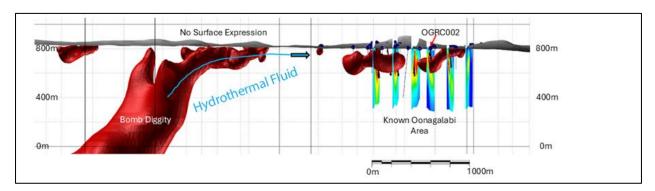


Figure 3. OGRC011- hitting the bottom of a small area of a large 500m + long conductor plate.

It is currently unclear where the main mineralised zone is within the VT2 conductor, however, downhole EM will be completed next week by AGS to help vector into its core with additional holes. Additional IP will be completed later in the year to model the broader zone of disseminated mineralisation and potentially locate the Oonagalabi Formation if present.


Different mineralisation style – Bomb Diggity Link

Mafic intrusive—hosted chalcopyrite—sphalerite mineralisation is now confirmed across the corridor, at Oonagalabi (OGRC010, 270–280 m), Bomb Diggity (OGRC009, 0–48 m) and VT2 (OGRC011).

Our model positions the large, +1km long and deep, steeply plunging magnetic anomaly at Bomb Diggity as a mafic intrusion, an engine that potentially contributed heat, fluids and metal into the broader Oonagalabi system (**Figure 4**).

Crucially, OGRC011 elevates the prospectivity of these mafic bodies to not only hosting disseminated mineralisation but also **semi-massive to massive Cu–Zn sulphides**. This information continues to reinforce our interpretation that main Bomb Diggity intrusion is the key driver of this system of significant scale.

Figure 4. Long section between Bomb Diggity and Oonagalabi (looking southeast) showing the Bomb-Diggity magnetic anomaly / intrusion (red polygon) and interpreted heat/fluid/metal outflow zone into the Oonagalabi prospect and beyond.

Strike further extended

Intersection of sulphide mineralisation at VT2 has extended the mineralised prospective strike at the Oonagalabi project by a further 1km east of Bomb Diggity. The prospective horizon, marked by the position of the Oonagalabi Formation, now extends beyond 4km from Silverado to Oonagalabi to Bomb Diggity and now VT2 (Figure 2).

Next Steps

While awaiting DHEM results, drilling will move to the VT1 conductor, located approximately 6km along strike to the southwest of the VT@ conductor. VT1 is a large (>400m), highly conductive target (up to 700 Siemens) coincident with a gossanous outcrop containing gold, silver, copper and tellurium mineralisation in rock chips. Oonagalabi Formation and associated calc-silicate alteration has been mapped at surface at VT1 further strengthening the quality of this high priority conductor target.

What's Next

- Commencement of drilling at VT1 conductor imminent
- DHEM survey results and modelling next week

Operational update

The Company has scaled back to one active drill rig at the Oonagalabi Project while it awaits the availability of a second rig from its preferred supplier.

We've demobilised one drill team due to their low daily production. While this slows the campaign, it improves operational efficiency, prioritises high-value targets and maintains tight cost discipline. We respect shareholders' capital and hold high standards for drilling performance.

The remaining rig will continue to focus on completing priority holes across the Oonagalabi system, including the recently identified VTEM conductor zones (VT1 and VT2).

Mobilisation of an additional rig will be reassessed once DHEM results and geological logging from the current drilling phase are received and reviewed.

Cautionary Statement

This announcement contains forward-looking statements that involve known and unknown risks, uncertainties, and other factors that may cause actual results, performance, or achievements to differ materially from those expressed or implied. Such statements include but are not limited to, interpretations of geophysical data, planned exploration activities, and potential mineralisation outcomes. Visual estimates of mineral abundance and pXRF results should never be considered a proxy or substitute for laboratory analyses where concentrations of grades are the factors of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuation. Forward-looking statements are based on Litchfield Minerals Limited's current expectations, beliefs, and assumptions, which are subject to change in light of new information, future events, and market conditions. While the Company believes that such expectations and assumptions are reasonable, they are inherently subject to business, geological, regulatory, and operational risks. Further work, including drilling, is required to determine the economic significance of any anomalies identified. Investors should not place undue reliance on forward-looking statements. Litchfield Minerals Limited disclaims any obligation to update or revise any forward-looking statements to reflect events or circumstances after the date of this announcement, except as required by law.

About Litchfield Minerals

Litchfield Minerals is a critical mineral explorer, primarily searching for base metals and uranium out of the Northern Territory of Australia. Our mission is to be a pioneering copper exploration company committed to delivering cost-effective, innovative and sustainable exploration solutions. We aim to unlock the full potential of copper and other mineral resources while minimising environmental impact, ensuring the longevity and affordability of this essential metal for future generations. We are dedicated to involving cutting-edge technology, responsible practices and stakeholder collaboration drives us to continuously redefine the industry standards and deliver value to our investors, communities and the world.

The announcement has been approved by the Board of Directors.

For further information please contact:

Matthew Pustahya Matthew@litchfieldminerals.com.au

Follow us on:

www.litchfieldminerals.com.au

https://twitter.com/Litchfield LMS

https://www.linkedin.com/company/litchfield-minerals-limited/

Competent Person's Statement

The information in this announcement relates to Exploration Results and is based on, and fairly represents, information and supporting documentation compiled by Mr Russell Dow (MSc, BSc Hons Geology), a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AUSIMM) and is a full-time employee of Litchfield Minerals Limited. Mr Dow has sufficient sampling experience that is relevant to the style of mineralisation and types of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Dow consents to the inclusion in the Public Report of the matters based on their information in the form and context in which it appears. With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements.

Appendix 1. OGRC011 Geological log

HOLE ID	From	То	CPY%	Minz	Grain	SPH%	Minz	Grain	Py%	Po%	TOT	Comments	
			0 , 0	type	size	0,0	type	size	. ,,,	. 0,0	%	Sommer Control of the	
OGRC011	180	181	0.1	DS	FG					0.1	0.2	Fine to medium-grained black amphibolite with 2% diss garnet and trace diss cpy-py	
OGRC011	181	182											
OGRC011	182	183										40% interbedded black amphibolite	
OGRC011	183	184	0.1	DS	FG					0.1		Massive, medium-grained, dark green amphibolite with trace diss sulphides	
OGRC011	184	187	0.5	DS	FG					0.5	1	As above but slightly more disseminated sulphides and 5% pale green qtz veins. Intrusive has 2% diss garnet	
OGRC011	187	189	0.1	DS	FG					0.1	0.2	Medium-grained black to green mafic amphibolite with minor to trace disseminated cpy-po	
OGRC011	189	190							_			4	
OGRC011	190	199	0.1	DS	FG				-	0.1	0.2	Medium-grained mafic amphibolite with 2% diss garnet and trace disseminated sulphides	
OGRC011	199	200	1	MS	MG	1	MS	MG	-	3	5	Medium-grained mafic amphibolite with 2% diss garnet and up to 5% disseminated sulphides	
OGRC011	200	201	2	MS	MG MG	3	MS	MG		10	15 7	Mafic amphibolite with zones of semi-massive to massive po-cpy-sph mineralisation (15%). Minor po +/- cpy veins	
OGRC011 OGRC011	201	202	0.1	DS DS	FG	0.5	MS DS	MG FG	-	3 0.5	1.1	Amphibolite with 7% total sulphides, mostly as disseminated and minor zones of net-textured to semi-massive Amphibolite with minor disseminated po-cpy-sph	
OGRC011	202	204	0.1	DS	FG	0.5	DS	FG	-	0.5	2	Amphibotile with minor dissernnated po-cpy-spn Amphibotile with this subtiles as disserninations and smeared zones / ultra thin veinlets	
OGRC011	204	211	0.1	DS	FG					0.1	0.2	Amphibolite with trace to minor disseminated sulphides Amphibolite with trace to minor disseminated sulphides	
OGRC011	211	212	0.1	- 53	16					0.1	0.2	portyprization with a daze to miniou inseriminated supprises. Medium-grained, oink feld-qtz gneiss with darker grey qtz-feld-bt gneiss interbands. Unaltered, unmineralised	
OGRC011	212	214										intercuring allies, units recruit griess with use ker gively question up intercuring intercuring units recruit griess with the griess that the griess banded with minor medium-grained massive amphibolite. Amph has a definite foliation, possibly some bt	
OGRC011	214	216										dezirezon gireiso bandea wiu minor ineduning eineur massive anipminosie. Zinipminos a derimier toriadori, possiny sonie bi Medium-grained, pink feld-qtz gneiss with darker grey qtz-feld-bt gneiss interbands. Unaltered, unmineralised	
OGRC011	216	217										intercum-rigament, prim recuracy gress with cracker gress questions and gress questions are gress questions and gress questions and gress with minor bands of medium-grained, dark green amphibotilie. Looks like amph but also could be bt-rich gneiss??	
OGRC011	217	219										Fink felt-data areiss	
OGRC011	219	220										Weakly foliated, massive medium-grained dark green amphibolite with 2% diss garnet	
OGRC011	220	231										Wedney Institute, institute institute from the property of the	
OGRC011	231	234	0.05	DS	FG				0.05	0.1	0.2	Contains on, unministrations of the containing o	
CORCOTT	201	204	0.00	- 50					0.00	0.1	0.2	Massive, apparently unfoliated, medium-grained amphibiole-feldspar +/- bt intrusive rock (amphibiolite). Can clearly see the interlocking amph-feld xis = igneous texture. Unfoliated	
												potentially indicates post peak metamorphism. Up to 3% diss po-py-cpy as fine disserimations interstitial to igneous matrix and as larger clumps / clots or semi-massive to massive	
OGRC011	234	235	0.5	DS	FG				0.5	2	3	subhide mineralisation	
OGRC011	235	240	0.0		<u> </u>				0.0			Unmineralised/unaltered qtz-feld-bt gneiss	
CONCOTT	200											Foilated gtz-feld-bt gneiss with minor bands of darker material that could be amphibolite. Definitely some disseminated po-py-cpy in the gneiss. Minor po veinlet obsersed = metal	
OGRC011	240	241	0.05	DS	FG				0.1	0.1	0.25	mobilisation	
OGRC011	241	242	0.1	DS	FG				0.1	0.3	0.5	Fine- to medium-grained, possibly unfoliated feld-horn intrusive rock with up to 0.5% total po-py-cpy sulphides, 10% unmineralised pale green qtz veins	
OGRC011	242	243										Unmineralised, fg-mg granular looking qtz-bt gneiss, unaltered, unmineralised	
OGRC011	243	244								0.2	0.2	Fine- to medium-grained amph-feld-bt-garn intrusive rock. Significant variation in individual mineral proportions between chips, probably only 20% intrusive rock in interval	
OGRC011	244	245	0.1	DS	FG				0.1	0.1	0.3	Mixed unit of massive mg dark green amphibolite, fine-medium-grained horn-feld-cg bt-garn intrusive rock and qtz-bt-feld gneiss. Intrusive rocks appear to have weak foliation	
OGRC011	245	246										Qtz-feld-bt gneiss with minor to trace bands / veins of cg phlog-anthophyllite (light, fibrous, soft xls)	
OGRC011	246	247	0.5	MS	MG	0.5	MS	CG		1	2	Dark green amphibolite rock with disseminated cpy-po. Minor chunks of massive, coarse-grained, cpy-po-sph	
OGRC011	247	248	2	MS	CG	3	MS	CG		4	9	Dark green-black amph-feld fine- to medium-grained intrusive rock with weak foliation with trace disseminated sulphides. Cut by 5% zones of massive sph-cpy-po mineralisation.	
OGRC011	248	249	3	MS	CG	4	MS	CG		4	11	As above with 3% qtz, cg garnet veins. As with above, where it is massive the cpy-sph-po are roughly in the same proportions, sph+cpy > po	
OGRC011	249	251	- 1	DS	MG	3	MS	CG		4	8	Dark green medium-grained amphibolite with 3% diss garnet. Zones with interstitial, disseminated and semi-massive po-cpy-sph mineralisation	
OGRC011	251	253	- 1	DS	MG	4	MS	CG		- 1	6	Amphibolite +/- qtz-feld-bt-garn gneiss. Also has 2% chunks of massive sph-cpy-po mineralisation.	
OGRC011	253	254										Darker, more bt-rich qtz-bt-garn gneiss. Can't see any disseminated sulphides but likely present in low levels.	
OGRC011	254	256	0.5	DS	FG	1	DS	FG		- 1	2.5	Weakly foliated, medium-grained amph-feld-bt-garn intrusive rock with minor po-cpy smears on foliation surfaces and disseminated interstitial sulphides in the intrusion	
												fine-grained to sub medium-grained qtz-feld-bt intrusive rock?? with weak fabric?. Has elongate laths of feldspar that give it an intrusive look. 5% diss garnet Garnet to 5mm	
OGRC011	256	263							├	-		porphyroblasts.	
OGRC011	263	264						ļ	<u> </u>	-		As above with minor band of dark green amphibolite, unmineralised to the eye.	
OGRC011	264	265							ļ		L	Unmineralised qtz-bt-garn gneiss	
OGRC011	265	266	0.5	DS	FG				_	0.5	1	Massive dark green amphibolite and amph-bt rock with minor diss cpy-po, some mineralisation is smeared along foliation planes.	
OGRC011	266	267							-			Unmineralised mafic amphibolite cut by 10% zones of qtz-lighter green horn-mag alteration	
OGRC011	267	268							!	ļ		Unmineralised or altered qtz-feld-bt gneiss	
OGRC011	268	276							!	 		Unmineralised dark, bt-rich qtz-bt gneiss?? Could be intrusive but most likely sediment/gneiss	
OGRC011	276	280							-			Regular qtz-feld-bt gneiss, unmineralised	
OGRC011	280 287	287	0.5	1/01	MG	1	101	MG	-	0.5	_	Otz-feld-bt gneiss with minorbands of massive, foliated biotite to almost amphibolite texture.	
OGRC011			0.5	VN	MG	1	VN	MG	 	0.5	2	As above with cpy-po bands/veins along foliation specifically in the cg bt-rich zones. Bt is either alteration bands or could be the mafic intrusive.	
OGRC011	291 294	294 298		<u> </u>					 	-		Unaltered pink feld-qtz and qtz-feld-bt gneiss interbands	
UGRCU11	294	298		L						-	L	Interbanded qtz-feld-bt gneiss and dark green amphibolie-garnet rock (intrusive)	

Chalcopyrite (CPY), Sphalerite (SPH), Pyrite (Py), Pyrrhotite (Po)

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. 	 RC Drilling Reverse Circulation (RC) was used to obtain samples collected in a large green bag (for a bulk sample) and a smaller calico 1m split sample for each metre drilled. Chip samples were collected using a sieve for each metre drilled and retained in a plastic chip tray that were used to complete geological logging and mineralisation visual estimates. A portable XRF instrument (Olympus Vanta) was used to assess Cu and Zn levels in green bags for each metre drilled. Reported intercepts calculated using a 0.1% Cu cut-off with maximum 4m internal dilution. All samples that exceeded either 0.1% Cu or 0.1% Zn were selected for individual 1m samples. 4m composite samples were collected for all intervals that did not exceed 0.1% Cu or 0.1% Zn. Spear sampling was used to collect 4m composite samples.

Criteria	JORC Code explanation	Commentary
	submarine nodules) may warrant disclosure of detailed information.	 QAQC standards (blank, reference and duplicate) were included routinely, alternating every 25 samples. All samples have been dispatched to Bureau Veritas in Adelaide for conventional multi-element and fire assay analysis (see Quality of Assay Data section below for further details). Rock chip samples were collected by selecting multiple small chips from each outcrop to produce a representative sample.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All holes were completed using the RC drilling technique by GeoDrill and Stark Drilling using a 5.5" face sampling bit. All holes were surveyed during drilling using a GyroMaster north-seeking gyro tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recoveries were visually estimated for each metre with poor or wet samples recorded in drill and sample log sheets. The sample cyclone was routinely cleaned at the end of each 6m rod and when deemed necessary. No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of RC drill holes was done on a visual basis with logging including lithology, alteration, mineralisation, structure, weathering, oxidation, magnetic susceptibility etc. Logging of RC drill samples is qualitative and based on the presentation of representative drill chips retained for all 1m sample intervals in the chip trays. All drillholes were geologically logged in their entirety.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc 	 1m cone split samples were collected for all metres at the time of drilling from the drill rig mounted cone splitter. The sample size is considered appropriate for the mineralisation style, application and analytical techniques used.

Criteria J	ORC Code explanation	Commentary
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	pXRF:No new assay data reported in this announcement.
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 QAQC standards, blanks and duplicates were routinely included at a rate of 1 per 25 samples. Further internal laboratory QAQC procedures included internal batch standards and blanks.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	QAQC duplicate samples were inserted every 75 samples as part of the routine QAQC sampling procedure.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars are surveyed with a handheld GPS with an accuracy of +/- 3m which is considered sufficient for drill hole location accuracy. Co-ordinates are in GDA94 datum, Zone 53. Downhole depths are in metres measured downhole from the collar location on surface.

Criteria	JORC Code explanation	Commentary
		 Topographic control has an accuracy of 2m based on detailed satellite imagery derived DTM or on laser altimeter data collected from aeromagnetic surveys.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No specific drillhole spacing was used for the Phase 2 program. Individual hole locations were selected based on specific geological and geophysical targets. Only a single hole has been drilled at the VT2 conductor and as such no attempts have been made to estimate geological continuity at the prospect other than relying on the modelled VTEM plate that has been proven to host semimassive and massive sulphides. 4m composite samples were completed on intervals that did not exceed 0.1% Cu or 0.1% Zn in pXRF analysis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 It is unknown whether the orientation of sampling achieves unbiased sampling as interpretation of quantitative measurements of mineralised zones/structures has not yet been completed. The drilling is oriented perpendicular to the lithological strike expected for the modelled VT2 conductor plate.

Criteria	JORC	Code explanation	Comn	nentary
Sample security	•	The measures taken to ensure sample security.	•	Each sample was put into a tied off calico bag and then several placed in large plastic "polyweave" bags which were zip tied closed. Samples have been driven to the Bureau Veritas laboratory in Adelaide by Northline Transport.
Audits o. reviews	•	The results of any audits or reviews of sampling techniques and data.	•	Continuous improvement internal reviews of sampling techniques and procedures are ongoing. No external audits have been performed.

JORC Code, 2012 Edition – Table 1 report

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenement includes Oonagalabi (EL32279) for a total of 145.3km² and 46 sub-blocks. EL32279 is owned by Kalk Exploration Pty. Ltd., a 100% owned entity of Litchfield Minerals Limited. The tenement is located approximately 125km northeast of Alice Springs on pastoral leases. The tenement is in good standing and there are no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 A summary of previous EL32279 exploration and mining is presented below: Oonagalabi was discovered in the 1930's. In 1970, Russgar Minerals completed regional mag-rad survey, VLF_EM survey, ground magnetic survey, single line resistivity traverse and 14 drillholes. In 1971, Geopeko completed limited IP.

Criteria	JORC Code explanation	Commentary
		 1979, Amoco completed photo-interpretation, rock chip sampling and drilling (8 holes). 1981 D'Dor Mining NL completed limited dipole-dipole IP. Between 1990 – 1996 on EL 6940 Clarence River Finance Group explored for garnet in the Florence and Maud Creeks, collecting 15 samples that averaged 4.4% garnet Between 1997 – 2000 on EL 9420 Clarence River Finance Group completed garnet exploration north of Oonagalabi EL32279. In 2007, ML 22624 was applied for to cover the central Oonagalabi deposit and surrounding proximal alluvial systems (outside 2025 bulk sampling area). No work was completed and the ML was relinquished in 2019. Silex 2009 completed pole-dipole IP 1 x diamond hole.
Geology	Deposit type, geological setting and style of mineralisation.	 The Oonagalabi-type mineralisation is considered to be either skarn-related, sediment-hosted or carbonate replacement with potential for high-grade remobilised breccia zones similar to the Jervois deposit. EL32279 falls within one of Geoscience Australia's IOCG high potential zones. The project lies within the Harts Range that represents a package of multiply deformed and metamorphosed sedimentary and igneous intrusive rock.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Table 1 for collar and hole orientation data. See Figure for spatial distribution of drillholes.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregation methods used. Reported assay intervals used a minimum 0.1% Cu and 0.1% Zn cut-off with a maximum of 4m of internal dilution below either 0.1% Cu or 0.1% Zn.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Where possible and known the drilling is oriented perpendicular to the lithological strike and dip of the target rock unit, except for OGRC010 that drilled at an oblique angle to strike. It is unknown whether the orientation of sampling achieves unbiased sampling of possible structures as no measurable structures are recorded in drill chips. The OGRC010 intercepts are not considered true thickness intervals and the complex folding of the system makes it difficult at this stage to determine what the true thickness of the intercept is. No quantitative measurements of mineralised zones/structures exist, and all drill intercepts are reported as down hole length in metres, true width unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See figures within the main body of the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available relevant information is presented.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	See the main body of this report for all pertinent observations and interpretations.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Future planned exploration includes: Completion of Phase 2 RC drilling program Inaugural diamond drilling program Inferred resource calculation.