

LYDIA GOLD PROSPECT- POTENTIAL ADDITION TO PRODUCTION LINE

HIGHLIGHTS

NMG is pleased to report high grade gold results from an RC drill program which has delineated additional mineralisation within the Lydia shear zone and extended the known depth and strike of the main mineralised structure. The program consisted of 33 reverse circulation holes totalling 2,920m.

Three diamond holes testing gold mineralisation and structural setting along the Lydia shear zone for 281.5m in length, have been drilled and the assay results are also included in this announcement.

Five geotechnical holes were drilled into planned pit walls of a proposed pit design with geotechnical analysis of the data underway (**Figure 5**).

Details of the drill holes are included in **Table 1** and the distribution of the holes with significant intersections are displayed in **Figure 2**.

Best intersections reported from this drilling program include:

- **3m at 32.9g/t Au** from 46m incl. **1m at 62.4g/t Au** from 47m in NGGRC1094
- **9.10m at 10.3g/t Au** from 89m incl. **1m at 24.6g/t Au** from 94m in NGGDD1144
- **8m at 9.1g/t Au** from 20m incl. **4m at 16.7g/t Au** from 24m in NGGRC1309
- **21m at 3.4g/t Au** from 117m incl. **1m at 8.4g/t Au** from 135m in NGGRC1109
- **12m at 5.5g/t Au** from 48m incl. **4m at 14.6g/t Au** from 52m in NGGRC1307
- **7m at 8.5g/t Au** from 90m incl. **1m at 16.1g/t Au** from 91m in NGGRC1112
- **4.15m at 11.7g/t Au** from 71.95m incl. **0.90m at 30.8g/t Au** from 73.10m in NGGDD1144
- **12m at 3.1g/t Au** from 20m in NGGRC1327
- **4m at 8.6g/t Au** from 40m in NGGRC1313
- **16m at 1.7g/t Au** from 12m in NGGRC1326
- **4m at 5.3g/t Au** from 66m incl. **1m at 10.3g/t Au** from 68m in NGGRC1106
- **7m at 2.9g/t Au** from 106m incl. **1m at 14.3g/t Au** from 108m in NGGRC1111
- **3m at 5.1g/t Au** from 64m incl. **1m at 11.7g/t Au** from 65m in NGGRC1110

New Murchison Gold Limited (**ASX:NMG**) (“**NMG**” or the “**Company**”) is pleased to provide an update on recent results and interpretations on the Lydia gold prospect coming from its exploration program. Lydia sits on granted mining lease M51/889 and covered by the same Native Title and Heritage Agreement which guides our cultural and heritage arrangements for the Crown Prince Gold Mine. High-grade gold intercepts have been returned from the main mineralised shear zone; encouraging results which open up the opportunity to prove up additional reserves within close proximity of the current Crown Prince Gold Operations.

Registered Address

New Murchison Gold
Limited
ACN 085 782 994

Level 2, 5 Ord Street
West Perth WA 6005

Directors & Management

Alex Passmore – CEO
Rick Crabb – Non-Exec Chairman
Malcolm Randall – Non-Exec. Director
Joanne Palmer – Non-Exec. Director

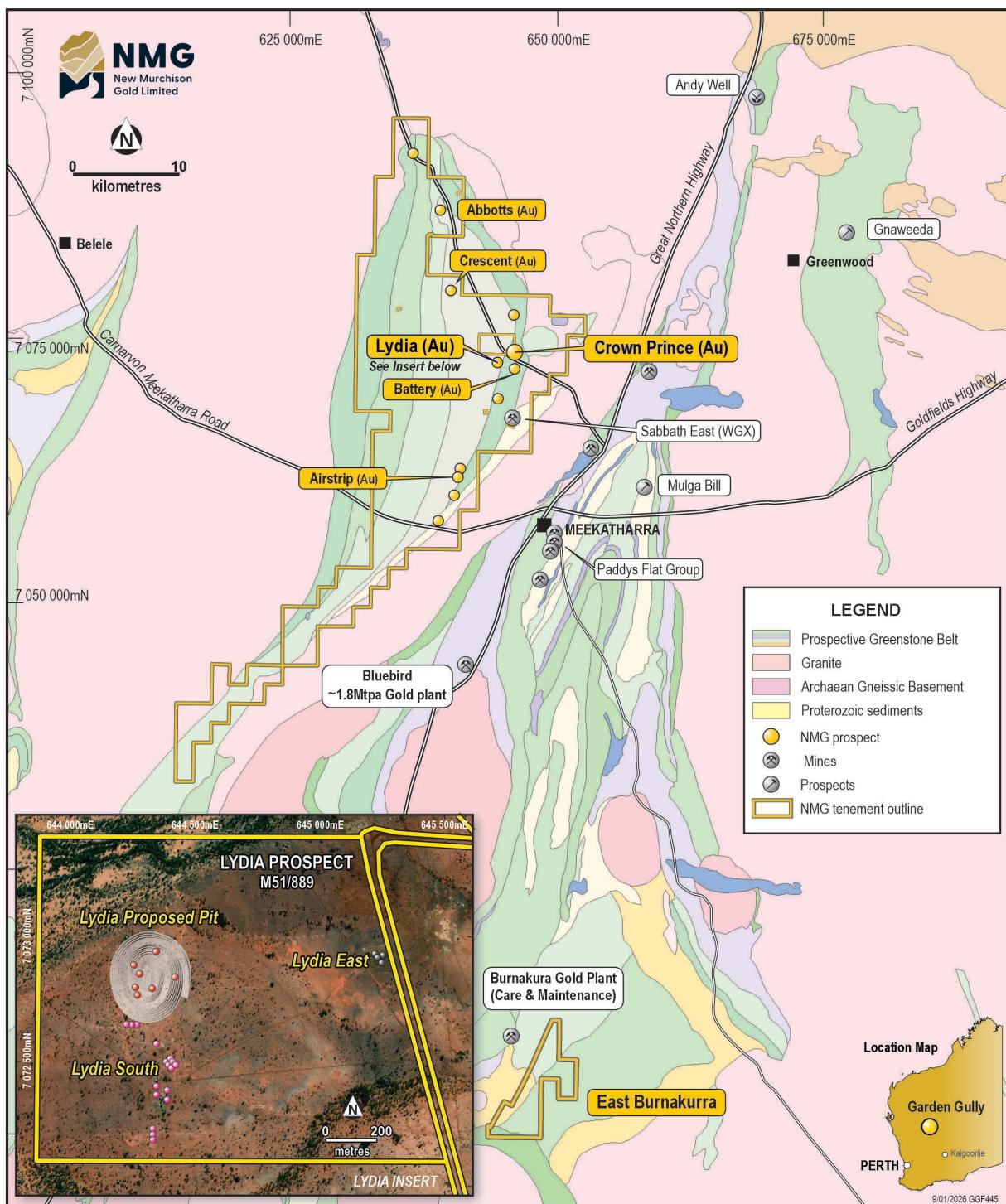
E: info@newmurchgold.com.au
P: +61 (08) 9389 6927
newmurchgold.com.au

Projects

Garden Gully Gold Project

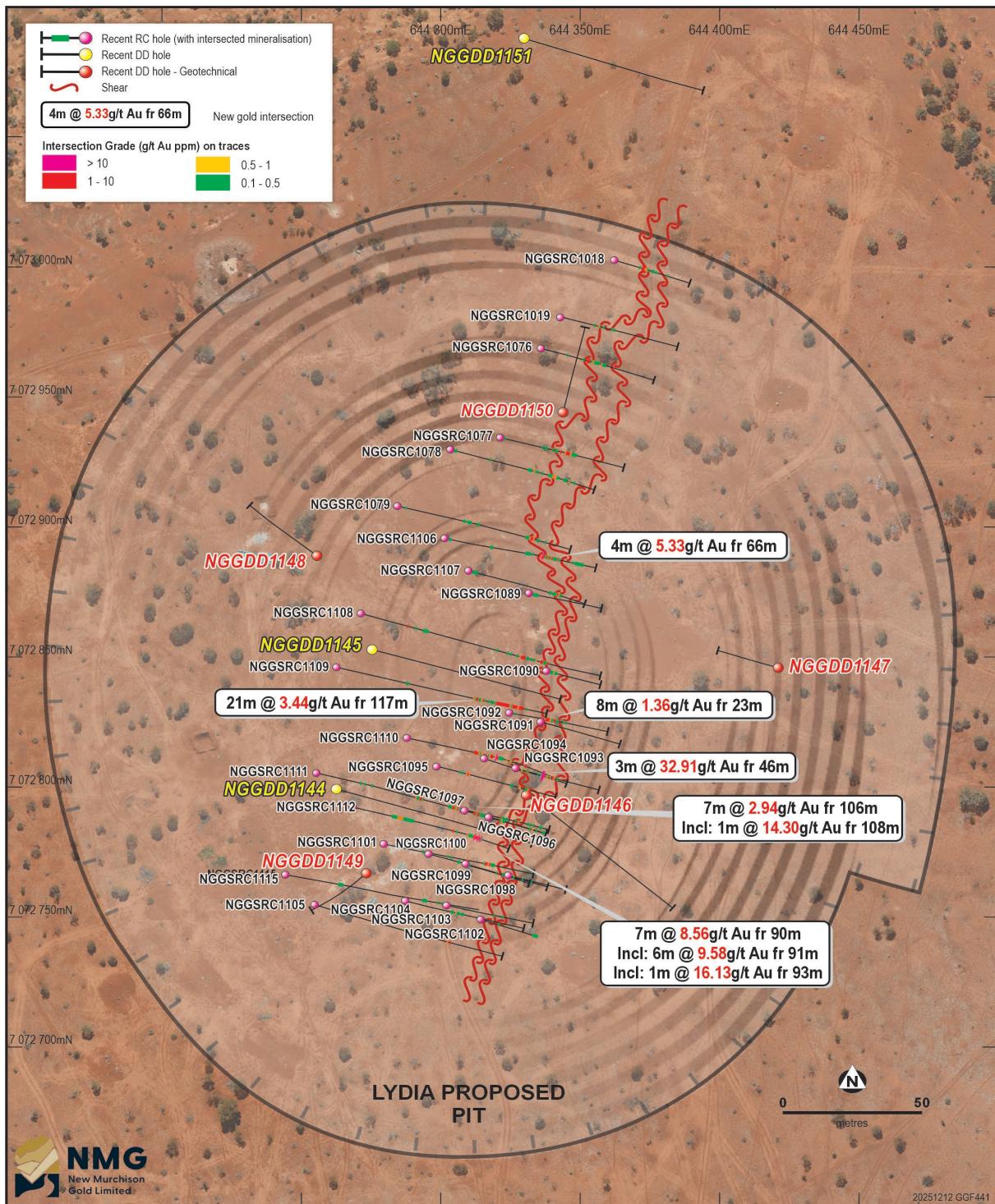
Corporate

Shares on Issue	10,822m
Share Price	\$0.051
Market Cap	\$552m
ASX Code	NMG


The Crown Prince Gold Mine is the company's flagship asset located 22 kilometres north-west of Meekatharra in Western Australia via the Great Northern Highway and the Mt Clere Road (**Figure 1**).

The Lydia shear zone is most likely a local dilational jog between two dominantly mafic/doleritic sills/dykes. Sporadic rafts of thin ultramafic schists have been identified on the footwall of the shear zone, which trends north/north-easterly and dips steeply to the west.

Gold mineralisation seen at Lydia is similar to the Crown Prince deposit and the shear zone is around 20-25m in thickness. The location of this structure is 800m west of Crown Prince and within an area displaying less deformation (**Figures 1-2**).


Alex Passmore NMG's CEO commented:

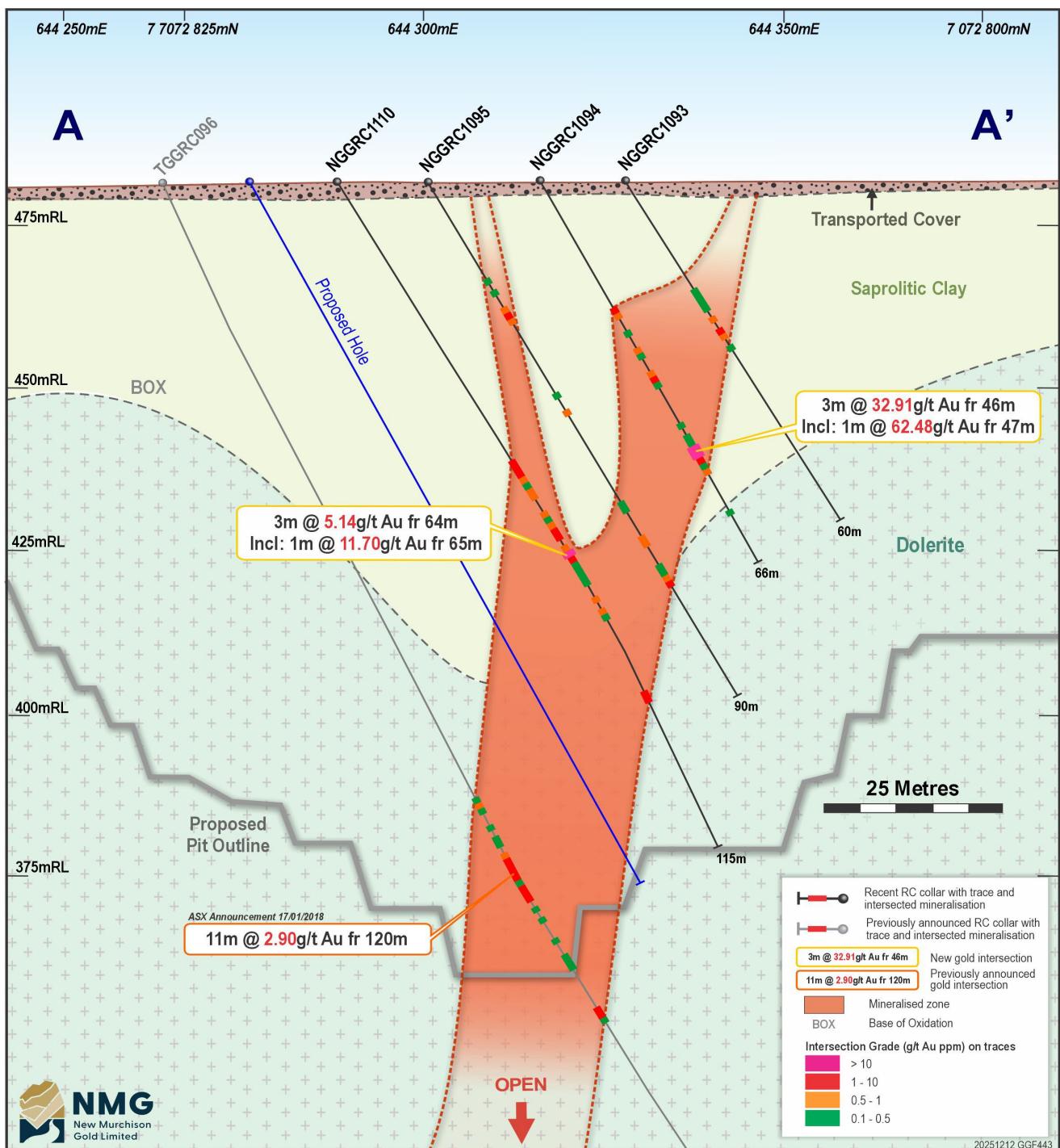
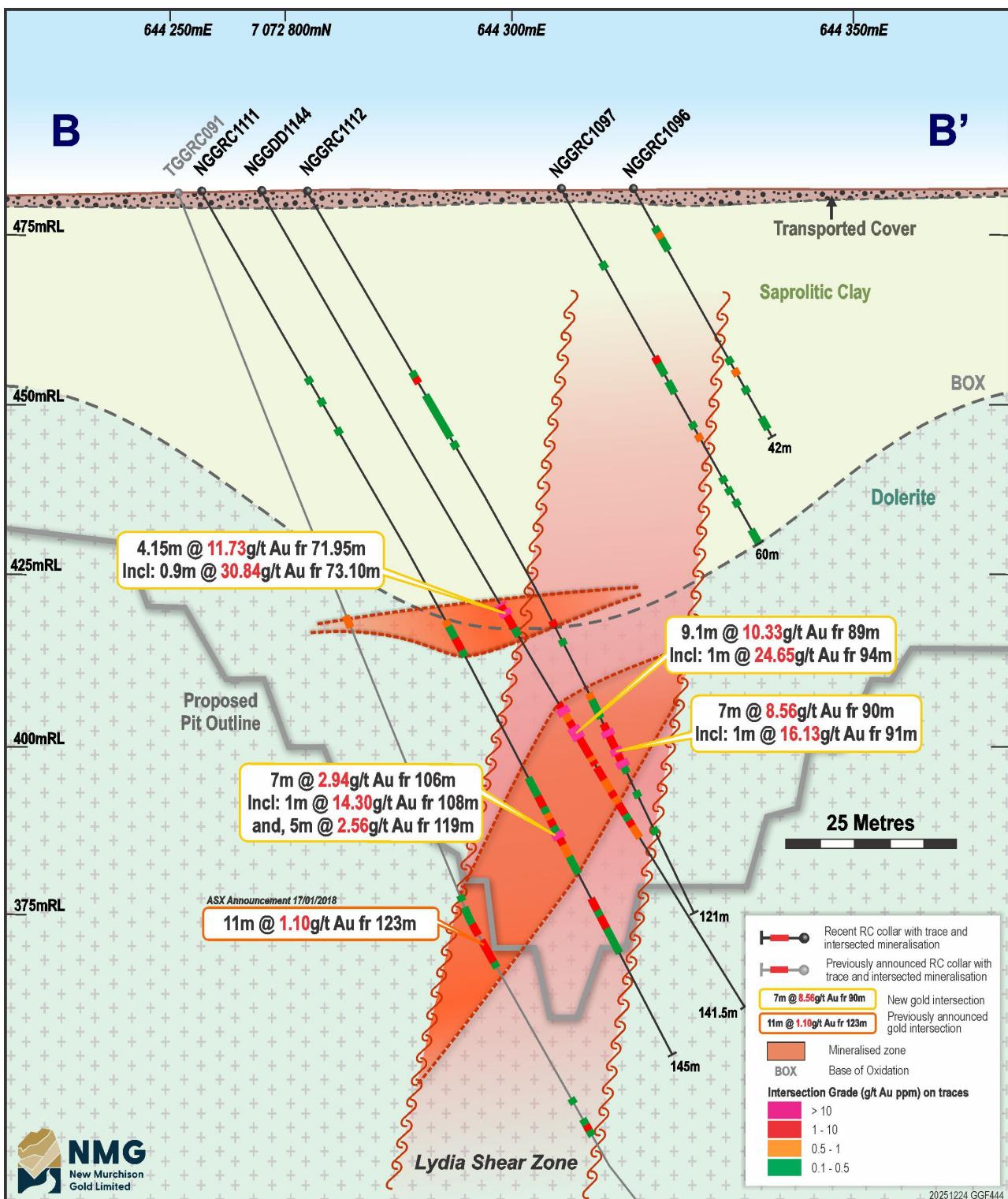
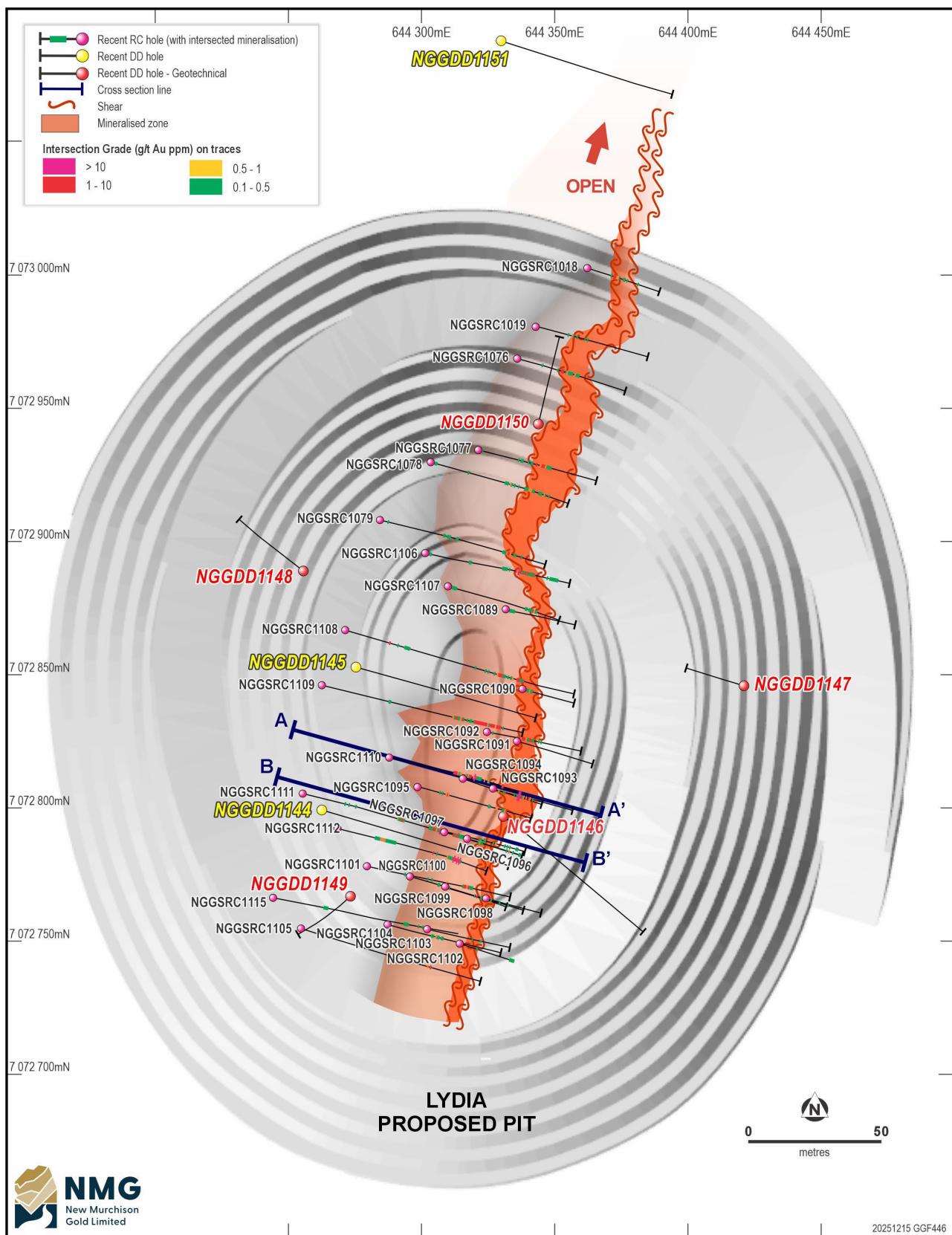
"We are very pleased to provide this exploration update including high grade results for the Lydia gold prospect. Lydia sits on a granted mining lease very close to the Crown Prince Operation. We believe we can leverage off existing infrastructure (offices, maintenance facility, crusher, and sampling preparation facility) to bring Lydia online relatively quickly. NMG is working towards including Lydia into its resources and reserves inventory."

Figure 1: Distribution of the recent Lydia drill holes (see corner insert) within the Abbotts Greenstone Belt

A slimline RC drilling program was undertaken over the Lydia South inferred shear zone and Lydia East gold prospect where exploration work was restricted in the past due to Yoothapina station's infrastructure including small buildings, wells and limited access due to cattle stock. The station was recently de-stocked and exploration work was permitted over those areas. It consisted of 28 drill holes totalling 1750m. The details are included in **Table 1** and the distribution is displayed on **Figures 6 and 8**.

Figure 2: Distribution of the recent significant intercepts over the Lydia Shear Zone

A ground gravity survey was also done over the Lydia South shear, and two prominent gravity heights features have been delineated (Figure 6). Several drill lines were undertaken, and significant shallow high-grade gold intercepts have returned and displayed in Figures 6 and 7. Only four holes have been drilled at the Lydia East prospect and very encouraging assay results have returned from recent drilling and they will be followed up by infill holes and deeper drilling during the next period (Figure 8).

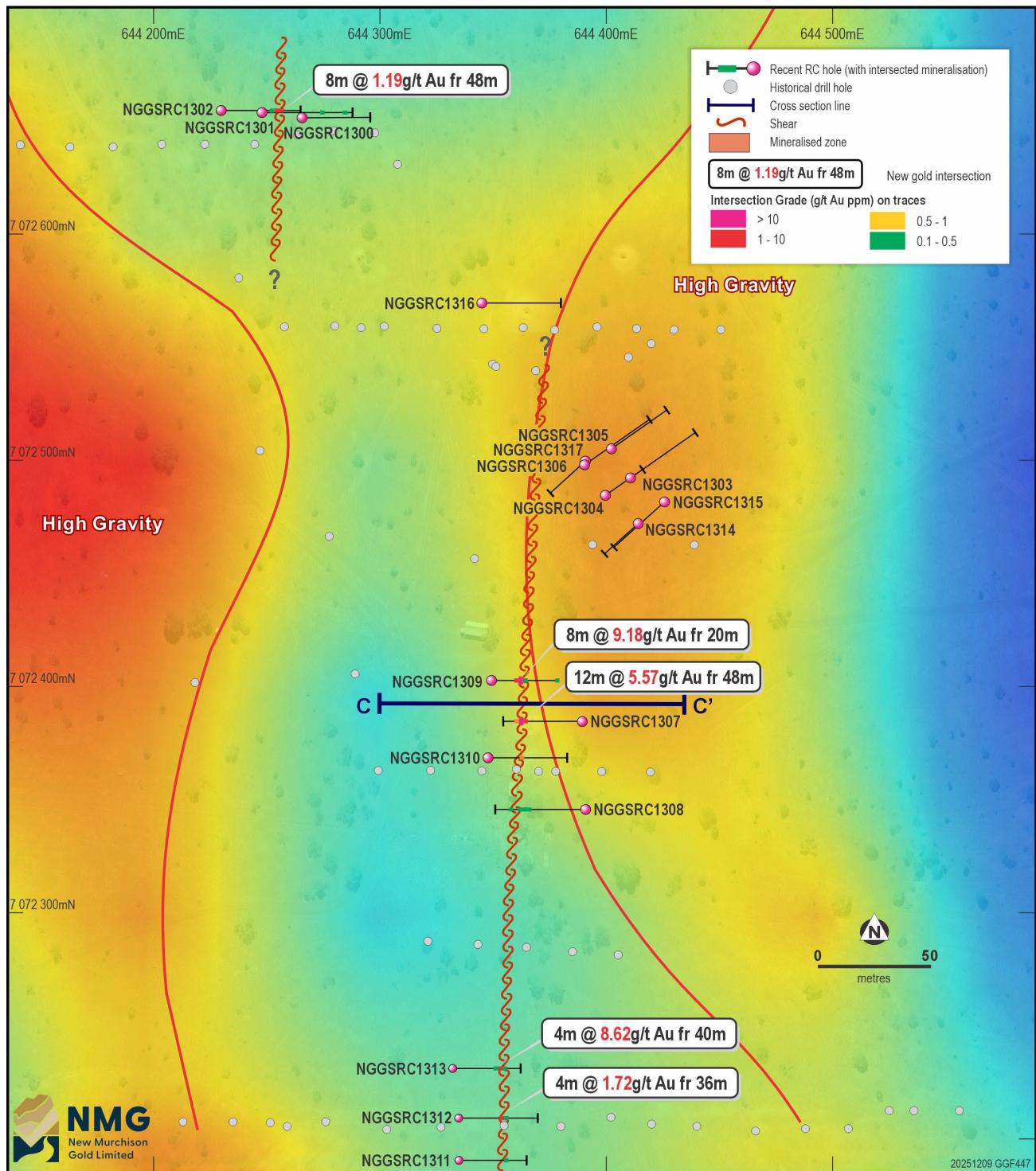

Figure 3: Cross section over the Lydia Shear Zone showing the recent high-grade gold intercept in NGGRC1094 hole

Figure 4: Cross section over the Lydia Shear Zone showing the high-grade gold intercepts in NGGRc1112-1144

Figure 5: Plan view over the designed Lydia pit with the drill hole traces and major mineralised shear zone

Figure 6: Plan view over the Lydia South shear zones showing the gravity heights and recent intercepts

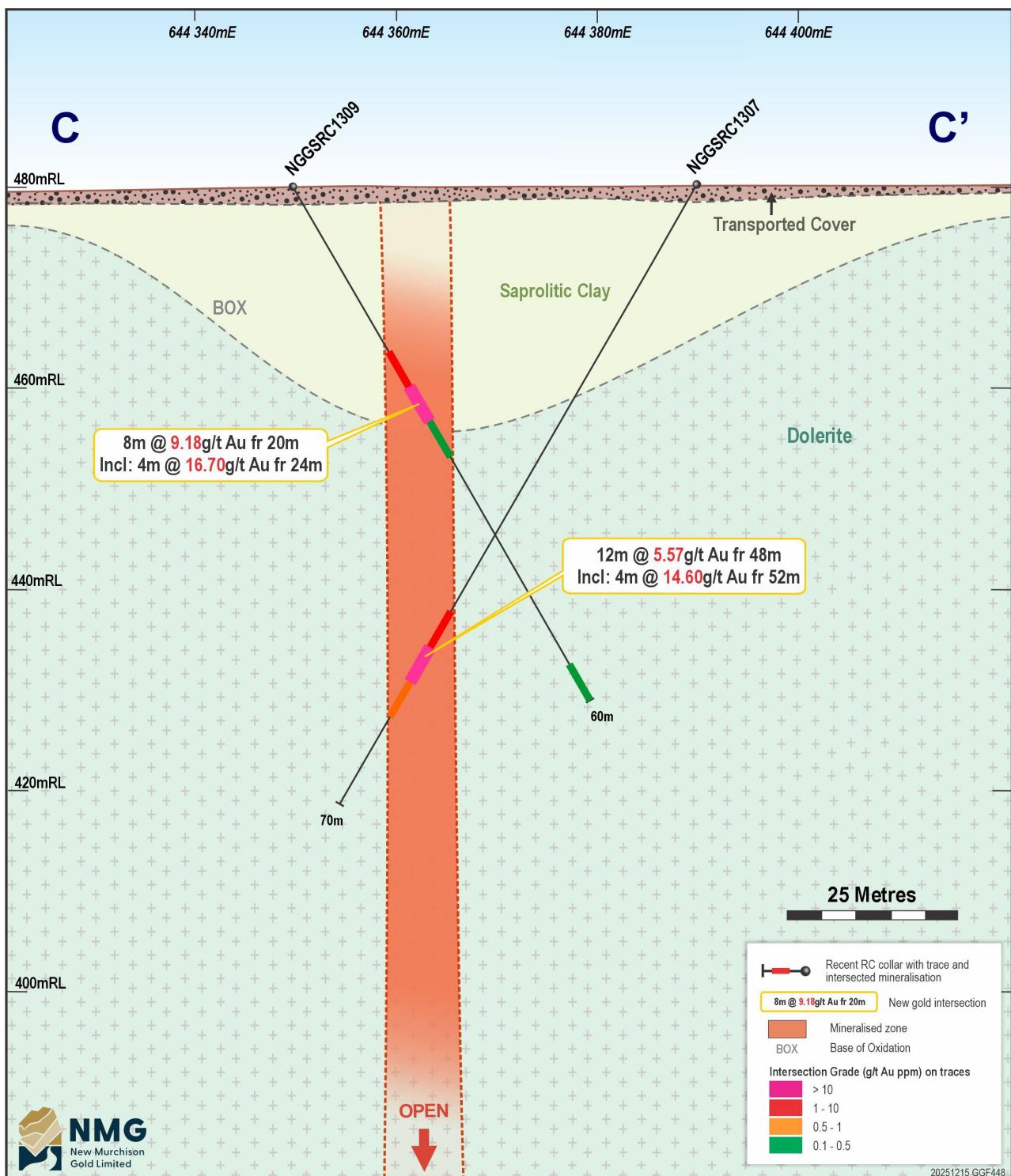
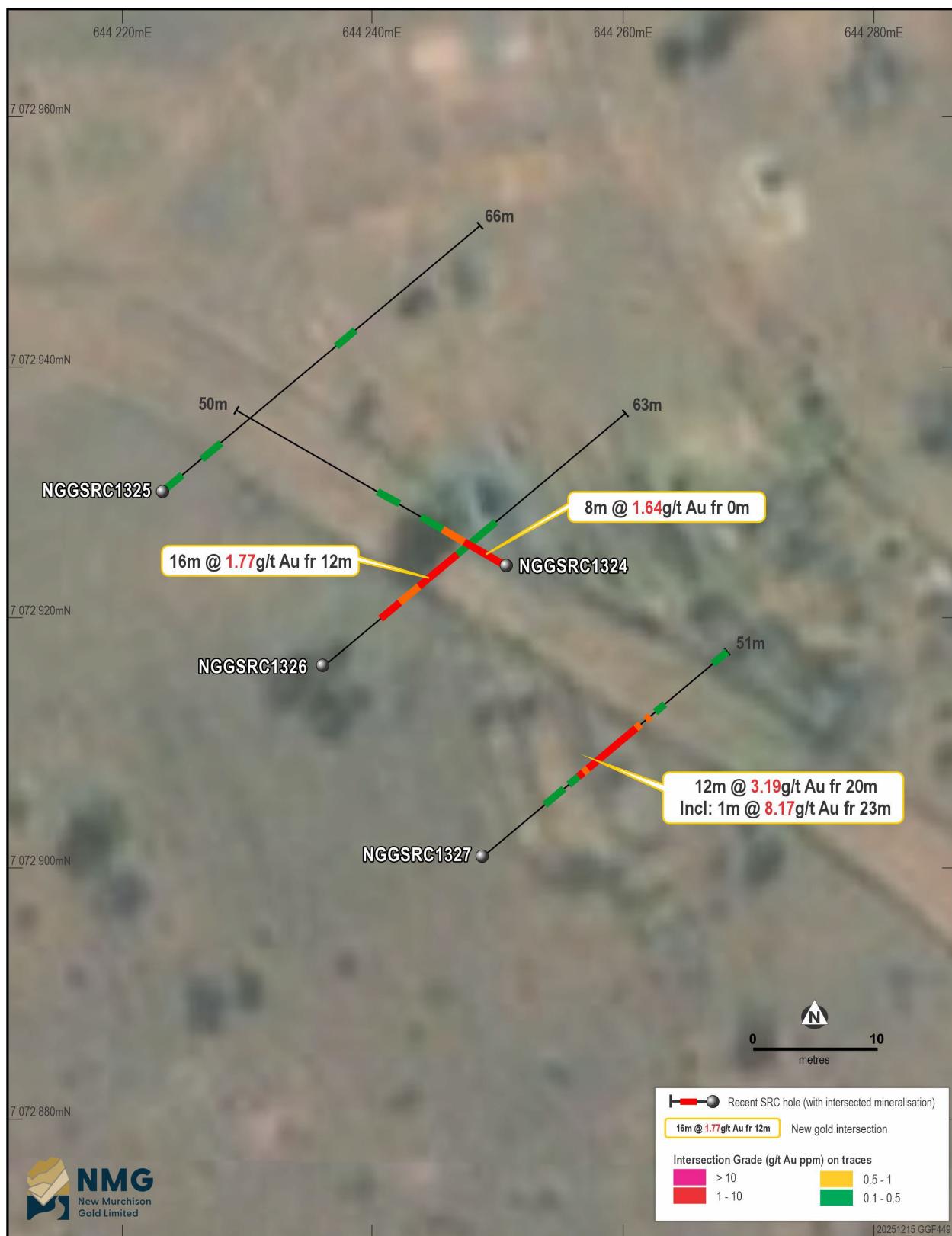



Figure 7: Cross section over the new Lydia South shear zone

Figure 8: Lydia East plan view with drill traces and gold intercepts

Next Steps

1. Update mineralisation modelling and incorporate into a JORC compliant resource model and re-design conceptual pit outline
2. Infill drill along the new Lydia South shear to define the extent of the shallow high grades
3. Additional drilling over the Lydia East prospect

Table 1: Recent Lydia reverse circulation (RC) drill hole details summary

Hole ID	Hole Type	Depth	Easting	Northing	RL	Tenement	Azi	Dip	Prospect
NGGRC1018	RC	55	644362	7073003	482	M51/889	107	-60	Lydia
NGGRC1019	RC	90	644343	7072981	482	M51/889	103	-60	Lydia
NGGRC1076	RC	84	644336	7072969	481	M51/889	105	-59	Lydia
NGGRC1077	RC	90	644321	7072934	481	M51/889	104	-59	Lydia
NGGRC1078	RC	108	644303	7072930	481	M51/889	105	-60	Lydia
NGGRC1079	RC	132	644284	7072908	481	M51/889	103	-60	Lydia
NGGRC1089	RC	54	644332	7072874	481	M51/889	101	-60	Lydia
NGGRC1090	RC	40	644338	7072845	482	M51/889	105	-60	Lydia
NGGRC1091	RC	60	644336	7072825	482	M51/889	105	-60	Lydia
NGGRC1092	RC	75	644325	7072828	482	M51/889	100	-60	Lydia
NGGRC1093	RC	60	644327	7072807	482	M51/889	105	-60	Lydia
NGGRC1094	RC	66	644316	7072811	482	M51/889	109	-61	Lydia
NGGRC1095	RC	90	644298	7072808	482	M51/889	104	-60	Lydia
NGGRC1096	RC	42	644318	7072788	482	M51/889	107	-59	Lydia
NGGRC1097	RC	60	644307	7072791	482	M51/889	104	-59	Lydia
NGGRC1098	RC	42	644324	7072766	482	M51/889	105	-60	Lydia
NGGRC1099	RC	60	644310	7072770	482	M51/889	107	-60	Lydia
NGGRC1100	RC	80	644296	7072774	482	M51/889	106	-60	Lydia
NGGRC1101	RC	108	644279	7072778	481	M51/889	103	-61	Lydia
NGGRC1102	RC	42	644314	7072749	482	M51/889	109	-60	Lydia
NGGRC1103	RC	60	644302	7072755	482	M51/889	103	-60	Lydia
NGGRC1104	RC	84	644287	7072756	482	M51/889	105	-60	Lydia
NGGRC1105	RC	132	644255	7072755	481	M51/889	107	-60	Lydia
NGGRC1106	RC	108	644301	7072896	481	M51/889	103	-59	Lydia
NGGRC1107	RC	90	644310	7072883	480	M51/889	107	-60	Lydia
NGGRC1108	RC	156	644271	7072867	481	M51/889	107	-60	Lydia
NGGRC1109	RC	155	644263	7072846	481	M51/889	103	-60	Lydia
NGGRC1110	RC	115	644288	7072819	481	M51/889	103	-60	Lydia
NGGRC1111	RC	145	644255	7072805	481	M51/889	103	-60	Lydia
NGGRC1112	RC	121	644268	7072792	481	M51/889	104	-59	Lydia
NGGRC1113	RC	60	644247	7072504	481	M51/889	270	-61	Lydia
NGGRC1114	RC	100	644218	7072402	481	M51/889	272	-61	Lydia
NGGRC1115	RC	156	644244	7072766	481	M51/889	100	-61	Lydia
NGGDD1144	DD	141.5	644263	7072799	483	M51/889	105	-60	Lydia
NGGDD1145	DD	140	644275	7072853	482.43	M51/889	104	-60	Lydia
NGGDD1146	DD	145	644332	7072797	483.21	M51/889	129	-63	Lydia
NGGDD1147	DD	130	644422	7072846	483.03	M51/889	291	-80	Lydia

Hole ID	Hole Type	Depth	Easting	Northing	RL	Tenement	Azi	Dip	Prospect
NGGDD1148	DD	120.6	644256	7072889	482.19	M51/889	307	-75	Lydia
NGGDD1149	DD	135	644273	7072767	483.57	M51/889	229	-80	Lydia
NGGDD1150	DD	100	644344	7072944	482.49	M51/889	9	-70	Lydia
NGGDD1151	DD	137.1	644330	7073088	481	M51/889	106	-61	Lydia
NGGSRC1300	SRC	60	644266	7072651	482	M51/889	90	-60	Lydia South
NGGSRC1301	SRC	80	644248	7072654	481	M51/889	90	-60	Lydia South
NGGSRC1302	SRC	70	644230	7072655	481	M51/889	90	-60	Lydia South
NGGSRC1303	SRC	70	644411	7072492	482	M51/889	55	-60	Lydia South
NGGSRC1304	SRC	40	644400	7072485	481	M51/889	55	-60	Lydia South
NGGSRC1305	SRC	60	644402	7072505	482	M51/889	55	-60	Lydia South
NGGSRC1306	SRC	70	644390	7072498	481	M51/889	55	-60	Lydia South
NGGSRC1307	SRC	70	644389	7072384	479	M51/889	270	-60	Lydia South
NGGSRC1308	SRC	80	644391	7072345	483	M51/889	270	-60	Lydia South
NGGSRC1309	SRC	60	644349	7072403	481	M51/889	90	-60	Lydia South
NGGSRC1310	SRC	70	644348	7072369	482	M51/889	90	-60	Lydia South
NGGSRC1311	SRC	60	644335	7072191	480	M51/889	90	-60	Lydia South
NGGSRC1312	SRC	70	644335	7072209	479	M51/889	90	-60	Lydia South
NGGSRC1313	SRC	60	644332	7072231	480	M51/889	90	-60	Lydia South
NGGSRC1314	SRC	40	644414	7072472	483	M51/889	228	-60	Lydia South
NGGSRC1315	SRC	60	644426	7072482	483	M51/889	228	-60	Lydia South
NGGSRC1316	SRC	70	644345	7072569	481	M51/889	90	-60	Lydia South
NGGSRC1317	SRC	42	644391	7072500	482	M51/889	228	-60	Lydia South
NGGSRC1318	SRC	72	645434	7073130	487	M51/889	90	-60	Lydia South
NGGSRC1319	SRC	42	645506	7073099	489	M51/889	295	-60	Lydia South
NGGSRC1320	SRC	60	645525	7073093	489	M51/889	295	-60	Lydia South
NGGSRC1321	SRC	60	645516	7073016	489	M51/889	270	-60	Lydia South
NGGSRC1322	SRC	78	645527	7073041	489	M51/889	270	-60	Lydia South
NGGSRC1323	SRC	87	645511	7072957	489	M51/889	270	-60	Lydia South
NGGSRC1324	SRC	50	645251	7072924	485	M51/889	300	-60	Lydia East
NGGSRC1325	SRC	66	645223	7072930	484	M51/889	50	-60	Lydia East
NGGSRC1326	SRC	63	645236	7072916	487	M51/889	50	-60	Lydia East
NGGSRC1327	SRC	51	645249	7072901	489	M51/889	50	-60	Lydia East

Table 2: Significant gold intercepts from Lydia Gold Prospect (>1g/t Au)

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1018	20	21	1	4.563	4.545	4.554	2m @ 3.12g/t Au
	21	22	1	1.723	1.664	1.693	
NGGRC1076	34	35	1	3.140	3.167	3.154	2m @ 2.29g/t Au
	35	36	1	1.424			
NGGRC1077	43	44	1	1.259			
	47	48	1	1.664			
	48	49	1	2.623	2.556	2.589	3m @ 2.00g/t Au
	49	50	1	1.903			
NGGRC1079	101	102	1	1.013			2m @ 1.71g/t Au
	102	103	1	2.406	2.413	2.409	
NGGRC1092	23	24	1	1.721			
	24	25	1	0.203			
NGGRC1092	25	26	1	2.278			8m @ 1.36g/t Au and
	26	27	1	0.676			
	27	28	1	2.611	2.795	2.703	
	28	29	1	1.394			
NGGRC1092	29	30	1	1.035			Shallow Supergene 2m @ 3.40g/t Au
	30	31	1	0.948			
	33	34	1	2.393	2.515	2.454	
	34	35	1	4.429	4.289	4.359	
NGGRC1093	26	27	1	2.032	1.962	1.997	
NGGRC1094 BEST	23	24	1	2.284	2.295	2.289	
	34	35	1	1.037			
	46	47	1	32.285	33.14	32.711	3m @ 32.91g/t Au SUPERGENE on footwall
	47	48	1	58.613	66.35	62.482	
	48	49	1	3.548			
NGGRC1095	23	24	1	2.384			
	70	71	1	1.619			
NGGRC1097	29	30	1	1.018	1.026	1.022	
NGGRC1100	54	55	1	2.730	2.814	2.772	
NGGRC1101	73	74	1	1.407			4m @ 1.97g/t Au
	74	75	1	4.269	4.146	4.208	
	75	76	1	0.543			
	76	77	1	1.723			
NGGRC1104	55	56	1	1.032	1.082	1.057	2m @ 1.52g/t Au
	56	57	1	1.911	2.058	1.985	
NGGRC1105	95	96	1	1.438	3.255	2.347	
NGGRC1106	66	67	1	9.187	9.09	9.139	4m @ 5.33g/t Au
	67	68	1	0.831	0.836	0.834	
	68	69	1	10.442	10.17	10.307	
	69	70	1	1.046			
	71	72	1	1.289			
	75	76	1	1.695	1.73	1.713	
	79	80	1	1.456			
NGGRC1108	33	34	1	1.544			3m @ 4.37g/t Au
	109	110	1	8.981	9.625	9.303	
	110	111	1	2.516	2.608	2.562	
	111	112	1	1.246			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	121	122	1	2.167			2m @ 1.87g/t Au
	122	123	1	1.515	1.620	1.568	
	125	126	1	1.689			
NGGRC1109	100	101	1	0.818			8m @ 1.23g/t Au Hangingwall of the SZ
	101	102	1	0.498			
	102	103	1	1.873			
	103	104	1	3.957			
	104	105	1	0.246			
	105	106	1	0.108			
NGGRC1109	106	107	1	0.799			
	107	108	1	1.25	1.789	1.519	
	117	118	1	5.119			
	118	119	1	7.684	7.431	7.558	
NGGRC1109	119	120	1	4.001			21m @ 3.44g/t Au Footwall SZ
	120	121	1	2.815			
	121	122	1	5.078			
	122	123	1	6.670			
	123	124	1	1.976			
	124	125	1	1.394			
	125	126	1	1.950			
	126	127	1	1.173			
	127	128	1	0.908			
	128	129	1	0.402			
	129	130	1	8.155	6.605	7.380	
	130	131	1	2.837			
	131	132	1	5.370			
	132	133	1	1.716			
	133	134	1	0.596			
	134	135	1	4.566			
	135	136	1	8.009	8.924	8.466	
	136	137	1	1.122			
	137	138	1	1.109			
NGGRC1110	49	50	1	1.716			3m @ 3.99g/t Au
	50	51	1	2.989			
	51	52	1	3.988			
	64	65	1	0.824			
	65	66	1	11.95	11.45	11.702	3m @ 5.14g/t Au
	66	67	1	2.903			
	89	90	1	2.152			
	90	91	1	1.323			
NGGRC1111	75	76	1	6.504			2m @ 4.47g/t Au
	76	77	1	2.446			
	102	103	1	3.014			
	103	104	1	1.076			
	106	107	1	1.493			7m @ 2.94g/t Au incl.
	107	108	1	0.311			
	108	109	1	16.097	12.49	14.295	
	109	110	1	2.452			
	110	111	1	0.859			
	111	112	1	0.707			
							1m @ 14.30g/t Au (108-109m)

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	112	113	1	0.494			and 5m @ 2.56g/t Au
	119	120	1	1.870	1.332	1.601	
	120	121	1	3.541			
	121	122	1	0.423			
	122	123	1	4.095			
	123	124	1	3.136			
NGGRC1112	73	74	1	1.184			
	90	91	1	1.934			7m @ 8.56g/t Au
NGGRC1112	91	92	1	14.940	17.32	16.130	incl. 6m @ 9.58g/t Au (91-97m) incl. 1m @ 16.13g/t Au (93-94m)
	92	93	1	4.856			
	93	94	1	6.884	6.914	6.899	
	94	95	1	14.458	12.02	13.237	
	95	96	1	6.819			
	96	97	1	10.767	9.326	10.047	
NGGDD1144	71.95	72.3	0.35	11.116			4.5m @ 11.73g/t Au incl. 0.9m @ 30.84g/t Au (73.1-74m) 9.1m @ 10.33g/t Au incl. 7m @ 24.65g/t Au (94-95m) 4m @ 3.28g/t Au
	72.3	73.1	0.8	7.664			
	73.1	74	0.9	25.952	35.726	30.839	
	74	750	1	9.266			
	75	76.1	1.1	1.526			
	89	89.7	0.7	9.494			
	89.7	90.88	1.18	18.725			
	90.88	92	1.12	0.702			
	92	93	1	6.784			
	93	94	1	11.013			
	94	95	1	25.226	24.066	24.646	
	95	96	1	7.593			
	96	97	1	4.928			
	97	98.1	1.1	8.603			
	98.1	98.8	0.7	0.852			
	98.8	99.4	0.6	5.365			
	99.4	99.9	0.5	0.071			
	99.9	101	1.1	3.831			
	101	101.4	0.4	3.854			
	101.4	102	0.6	2.262			
	102	103	1	0.698			
	103	104	1	0.631			
	104	105	1	4.405			
	105	106	1	0.792			
	106	107	1	2.512			
	107	108	1	5.428			
	108	109	1	0.178			
	109	110	1	2.186			
	110	111	1	0.776			
	111	112	1	0.508			
NGGDD1145	107	108	1	1.019			3m @ 2.87g/t Au
	108	109	1	1.820			
	109	109.35	0.35	3.900			
	123	123.6	0.6	4.600			
	123.6	124	0.4	9.360			
	124	124.9	0.9	2.350			

Table 3: Significant gold intercepts from Lydia South Gold Prospect (>1g/t Au)

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGSRC1302	48	52	4	1.220			8m @ 1.19g/t Au
	52	56	4	1.160			
NGGSRC1307	48	52	4	1.170			12m @ 5.57g/t Au Incl. 4m @ 14.60g/t Au (52-56m)
	52	56	4	14.60			
	56	60	4	0.950			
NGGSRC1309	20	24	4	1.640			8m @ 9.18g/t Au Incl. 4m @ 16.70g/t Au (24-28m)
	24	28	4	16.700			
NGGSRC1312	36	40	4	1.720			4m @ 1.72g/t Au
NGGSRC1313	40	44	4	8.620			4m @ 8.62g/t Au

Table 4: Significant gold intercepts from Lydia East Gold Prospect (>1g/t Au)

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGSRC1324	0	4	4	1.050			8m @ 1.64g/t Au
	4	8	4	2.440			
NGGSRC1326	12	16	4	3.160			16m @ 1.77g/t Au
	16	20	4	0.930			
	20	24	4	1.790			
	24	28	4	1.200			
NGGSRC1327	20	21	1	1.700			12m at 3.19g/t Au incl. 1m at 8.17g/t Au (23-24m)
	21	22	1	0.580			
	22	23	1	1.710			
	23	24	1	8.170			
	24	25	1	6.800			
	25	26	1	2.760			
	26	27	1	4.760			
	27	28	1	2.000			
	28	29	1	1.700			
	29	30	1	2.180			
	30	31	1	4.430			
	31	32	1	1.520			

Authorised for release to ASX by the Board of New Murchison Gold Limited.

For further information, please contact:

Alex Passmore
 Chief Executive Officer
E: info@newmurchgold.com
newmurchgold.com.au

Jane Morgan
 Investor and Media Relations
E: jm@janemorganmanagement.com.au

ABOUT NEW MUCHISON GOLD

New Murchison Gold Ltd (ASX:NMG) is a mineral exploration and development company which holds a substantial package of tenements in the prolific Murchison goldfield near Meekatharra, Western Australia.

The Company is focused on the Garden Gully Gold Project which comprises a 677km² tenure package covering the Abbotts Greenstone Belt and other key regional structures. The project has multiple gold deposits along the belt with the most advanced being the Crown Prince Deposit.

Gold mineralisation in the belt is controlled by major north trending structures and contact zones between felsic and mafic metamorphosed rocks.

NMG updated its Mineral Resource Estimate in November 2024 and reported a maiden Ore Reserve and Feasibility Study for the Crown Prince Deposit in February 2025. This places NMG on track towards becoming a gold producer.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on NMG management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of NMG, which could cause actual results to differ materially from such statements. NMG makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing.

Refer to www.newmurchgold.com.au for past ASX announcements.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Costica Vieru, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Vieru has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Vieru is an employee of NMG Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to Mineral Resources is based upon, and fairly represents, information and supporting documentation compiled by Mr Craig Stokes MAusIMM. Mr Stokes is a Principal Geologist with Stokes Geoscience with over 18 years in the mining industry and a Member of the Australasian Institute of Mining and Metallurgy. The Competent Person has sufficient experience relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Stokes consents to the inclusion in this announcement of the matters based upon his input into the information in the form and context in which it appears.

The Competent Person for the Ore Reserve estimate is Mr Hemal Patel, a mining engineer with more than 18 years' experience in the mining industry. Mr. Hemal is a Member of the AusIMM, a full-time employee of Has Holdings Pty Ltd and has sufficient open pit mining activity experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the JORC Code. Mr Hemal consents to the inclusion of information relating to the Ore Reserve in the form and context in which it appears.

Table 5: All Significant Assays from Drilling discussed in this ASX Announcement (assays > 0.1 ppm)

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1018	18	19	1	0.117			
	20	21	1	4.563	4.545	4.554	2m @ 3.12g/t Au (20-22m)
	21	22	1	1.723	1.664	1.6935	
	22	23	1	0.57			
	23	24	1	0.288			
	24	25	1	0.495			
	27	28	1	0.214			
	28	29	1	0.152			
	30	31	1	0.105			
	38	39	1	0.256			
NGGRC1019	25	26	1	0.114	0.103	0.109	
	28	29	1	0.646	0.671	0.659	
	29	30	1	0.323			
	32	33	1	0.206			
	38	39	1	0.154			
	40	41	1	0.135			
NGGRC1076	19	20	1	0.325			
	31	32	1	0.402			
	34	35	1	3.140	3.167	3.154	2m @ 2.29g/t Au (34-36m)
	35	36	1	1.424			
	37	38	1	0.22			
	38	39	1	0.549			
	39	40	1	0.137			
	40	41	1	0.123			
	41	42	1	0.405			
	42	43	1	0.107			
	44	45	1	0.835			
	45	46	1	0.273			
	46	47	1	0.149			
	47	48	1	0.175			
NGGRC1077	3	4	1	0.197			
	30	31	1	0.161			
	32	33	1	0.345			
	33	34	1	0.179			
	37	38	1	0.281			
	39	40	1	0.399	0.396	0.398	
	40	41	1	0.160			
	43	44	1	1.259			
	46	47	1	0.724			
NGGRC1077	47	48	1	1.664			3m @ 2.0g/t Au

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1078	48	49	1	2.623	2.556	2.5895	(47-50m)
	49	50	1	1.903			
	50	51	1	0.612			
	51	52	1	0.46			
	52	53	1	0.132			
	53	54	1	0.134			
	54	55	1	0.139			
NGGRC1079	3	4	1	0.132			
	4	5	1	0.136			
	29	30	1	0.103			
	58	59	1	0.122			
	59	60	1	0.371			
	60	61	1	0.414			
	62	63	1	0.844			
	63	64	1	0.326			
	65	66	1	0.29			
	68	69	1	0.17			
	73	74	1	0.136			
	74	75	1	0.1			
	75	76	1	0.2			
	76	77	1	0.231			
	77	78	1	0.519	0.716	0.618	
NGGRC1079	78	79	1	0.507	0.458	0.483	
	79	80	1	0.476			
	80	81	1	0.238			
	84	85	1	0.148			
	85	86	1	0.287			
	86	87	1	0.225			
	88	89	1	0.668	0.662	0.665	
	89	90	1	0.407			
	92	93	1	0.163			
	6	7	1	0.129			
NGGRC1079	49	50	1	0.11			
	50	51	1	0.476			
	52	53	1	0.213			
	53	54	1	0.187			
	54	55	1	0.102			
	59	60	1	0.28			
	60	61	1	0.121			
	97	98	1	0.103			
	98	99	1	0.379			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1089	99	100	1	0.384			
	100	101	1	0.593			
	101	102	1	1.013			2m @ 1.71g/t Au (101-102m)
	102	103	1	2.406	2.413	2.4095	
	103	104	1	0.5			
	106	107	1	0.103			
	107	108	1	0.252			
	112	113	1	0.192			
NGGRC1090	3	4	1	0.405			
	4	5	1	0.217			
	5	6	1	0.28			
	6	7	1	0.181			
	2	3	1	0.291			
	3	4	1	0.182			
NGGRC1091	4	5	1	0.148			
	5	6	1	0.535			
	6	7	1	0.364			
	7	8	1	0.202			
	0	1	1	0.101			
	23	24	1	1.721			8m @ 1.36g/t Au (23-31m) Shallow Supergene
NGGRC1092	24	25	1	0.203			
	25	26	1	2.278			
	26	27	1	0.676			
	27	28	1	2.611	2.795	2.703	
	28	29	1	1.394			
	29	30	1	1.035			
	30	31	1	0.948			
	31	32	1	0.284			
	32	33	1	0.287			and
	33	34	1	2.393	2.515	2.454	2m @ 3.4g/t Au (33-35m)
	34	35	1	4.429	4.289	4.359	
	35	36	1	0.388			
	36	37	1	0.17			
	40	41	1	0.262			
	42	43	1	0.147			
NGGRC1093	19	20	1	0.187			
	20	21	1	0.339			
	21	22	1	0.491			
	22	23	1	0.151			
NGGRC1093	23	24	1	0.099			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1094 BEST	24	25	1	0.651			
	25	26	1	0.083			
	26	27	1	2.032	1.962	1.997	
	27	28	1	0.639			
	29	30	1	0.198			
NGGRC1094 BEST	22	23	1	0.656			
	23	24	1	2.284	2.295	2.290	
	26	27	1	0.207			
	29	30	1	0.629			
	30	31	1	0.278			
	33	34	1	0.124			
	34	35	1	1.037			
	35	36	1	0.118			
	42	43	1	0.275			
	44	45	1	0.209			
	45	46	1	0.183			
	46	47	1	32.285	33.136	32.711	3m @ 32.91g/t Au (46-49m)
	47	48	1	58.613	66.351	62.482	
	48	49	1	3.548			
	49	50	1	0.127			
	50	51	1	0.763			
	57	58	1	0.317			
NGGRC1095	17	18	1	0.110			
	19	20	1	0.218			
	22	23	1	0.539			
	23	24	1	2.384			
	24	25	1	0.529			
	37	38	1	0.268			
	40	41	1	0.844			
	56	57	1	0.140			
	57	58	1	0.340			
	62	63	1	0.834			
	63	64	1	0.500			
	67	68	1	0.244			
	68	69	1	0.285			
	69	70	1	0.647			
NGGRC1096	70	71	1	1.619			
	7	8	1	0.160			
	8	9	1	0.833			
NGGRC1096	9	10	1	0.118			
NGGRC1096	10	11	1	0.106			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	29	30	1	0.205			
	31	32	1	0.639			
	34	35	1	0.106			
	39	40	1	0.113			
	40	41	1	0.162			
NGGRC1097	13	14	1	0.361			
	29	30	1	1.018	1.026	1.022	
	30	31	1	0.213			
	31	32	1	0.143			
	33	34	1	0.124			
	34	35	1	0.105			
	40	41	1	0.142			
	42	43	1	0.615	0.633	0.624	
	49	50	1	0.322			
	51	52	1	0.106			
	53	54	1	0.326			
	58	59	1	0.133			
	59	60	1	0.217			
NGGRC1098	3	4	1	0.170			
	5	6	1	0.112			
NGGRC1099	28	29	1	0.323			
	35	36	1	0.107			
	40	41	1	0.17			
	47	48	1	0.100			
NGGRC1100	22	23	1	0.104			
	23	24	1	0.158			
	26	27	1	0.211			
	28	29	1	0.379			
	29	30	1	0.183			
	30	31	1	0.120			
	31	32	1	0.188			
	52	53	1	0.253			
	54	55	1	2.730	2.814	2.772	
	57	58	1	0.491			
	58	59	1	0.369			
	66	67	1	0.107			
	67	68	1	0.100			
NGGRC1101	29	30	1	0.118			
	32	33	1	0.143			
	33	34	1	0.077			
NGGRC1101	34	35	1	0.541			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	46	47	1	0.104			
	49	50	1	0.166			
	60	61	1	0.519			
	72	73	1	0.35			
	73	74	1	1.407			4m @ 1.97g/t Au (73-77m)
	74	75	1	4.269	4.146	4.208	
	75	76	1	0.543			
	76	77	1	1.723			
	77	78	1	0.336			
	78	79	1	0.123			
	79	80	1	0.139			
NGGRC1102	2	3	1	0.132			
	13	14	1	0.120			
	38	39	1	0.370			
	39	40	1	0.450			
	40	41	1	0.211			
	41	42	1	0.142			
NGGRC1103	33	34	1	0.176			
	39	40	1	0.306			
NGGRC1104	32	33	1	0.341			
	36	37	1	0.645			
	37	38	1	0.434			
	38	39	1	0.119			
	40	41	1	0.389			
	41	42	1	0.131			
	50	51	1	0.169			
	51	52	1	0.171			
	52	53	1	0.155			
	55	56	1	1.032	1.082	1.057	2m @ 1.52g/t Au (55-57m)
	56	57	1	1.911	2.058	1.985	
	57	58	1	0.387			
	58	59	1	0.647			
	60	61	1	0.253			
	61	62	1	0.348			
NGGRC1105	35	36	1	0.116			
	38	39	1	0.089	0.122	0.106	
	93	94	1	0.855	0.851	0.853	
	95	96	1	1.438	3.255	2.347	
NGGRC1106	3	4	1	0.198			
	4	5	1	0.297			
NGGRC1106	32	33	1	0.160			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1107	33	34	1	0.245			
	56	57	1	0.243			
	57	58	1	0.174			
	58	59	1	0.246			
	59	60	1	0.378			
	61	62	1	0.113			
	66	67	1	9.187	9.09	9.139	4m @ 5.33g/t Au (66-70m)
	67	68	1	0.831	0.836	0.834	
	68	69	1	10.442	10.172	10.307	
	69	70	1	1.046			
	70	71	1	0.491			
	71	72	1	1.289			
	72	73	1	0.159			
	74	75	1	0.132			
	75	76	1	1.695	1.73	1.713	
	76	77	1	0.403			
	77	78	1	0.256			
	78	79	1	0.294			
	79	80	1	1.456			
	80	81	1	0.135			
	90	91	1	0.125			
	92	96	4	0.150			
NGGRC1108	96	97	1	0.322			
	97	98	1	0.187			
	98	99	1	0.191			
	2	3	1	0.206			
	3	4	1	0.331			
	4	5	1	0.226			
	5	6	1	0.194			
	6	7	1	0.142			
	33	34	1	1.544			
	39	40	1	0.234			
NGGRC1108	44	45	1	0.101			
	45	46	1	0.114			
	46	47	1	0.257			
	47	48	1	0.108			
	93	94	1	0.196			
	100	101	1	0.138			
	102	103	1	0.148			
	106	107	1	0.147			
NGGRC1108	108	109	1	0.639			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1109	109	110	1	8.981	9.625	9.303	3m @ 4.37g/t Au (109-112m)
	110	111	1	2.516	2.608	2.562	
	111	112	1	1.246			
	112	113	1	0.382			
	113	114	1	0.168			
	115	116	1	0.215			
	117	118	1	0.240			
	118	119	1	0.500			
	121	122	1	2.167			
	122	123	1	1.515	1.62	1.568	
	123	124	1	0.279			
	124	125	1	0.386			
	125	126	1	1.689			
	100	101	1	0.818			8m @ 1.23g/t Au (100-108m) Hangingwall of the SZ
	101	102	1	0.498			
	102	103	1	1.873			
	103	104	1	3.957			
	104	105	1	0.246			
	105	106	1	0.108			
	106	107	1	0.799			
	107	108	1	1.250	1.789	1.520	
	108	109	1	0.423			
	109	110	1	0.020			
	110	111	1	0.079			
	111	112	1	0.148			
	112	113	1	0.083			
	113	114	1	0.188			
	114	115	1	0.121			
	115	116	1	0.041			
	116	117	1	0.130			
NGGRC1109	117	118	1	5.119			21m @ 3.44g/t Au (117-138m) Footwall SZ
	118	119	1	7.684	7.431	7.558	
	119	120	1	4.001			
	120	121	1	2.815			
	121	122	1	5.078			
	122	123	1	6.670			
	123	124	1	1.976			
	124	125	1	1.394			
	125	126	1	1.950			
	126	127	1	1.173			
	127	128	1	0.908			
	128	129	1	0.908			
	129	130	1	0.908			
	130	131	1	0.908			
	131	132	1	0.908			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGRC1110	128	129	1	0.402			
	129	130	1	8.155	6.605	7.38	
	130	131	1	2.837			
	131	132	1	5.370			
	132	133	1	1.716			
	133	134	1	0.596			
	134	135	1	4.566			
	135	136	1	8.009	8.924	8.467	
	136	137	1	1.122			
	137	138	1	1.109			
NGGRC1111	49	50	1	1.716			3m @ 3.99g/t Au (49-52m)
	50	51	1	2.989			
	51	52	1	3.988			
	52	53	1	0.625			
	53	54	1	0.436			
	54	55	1	0.630			
	55	56	1	0.820			
	58	59	1	0.946			
	59	60	1	0.31			
	60	61	1	0.608			
	64	65	1	0.824			3m @ 5.14g/t Au (64-67m)
	65	66	1	11.950	11.453	11.702	
	66	67	1	2.903			
	67	68	1	0.310			
	68	69	1	0.106			
	69	70	1	0.121			
	70	71	1	0.102			
	73	74	1	0.562			
	76	77	1	0.703			
	77	78	1	0.190			
	89	90	1	2.152			
	90	91	1	1.323			
NGGRC1111	32	33	1	0.107			2m @ 4.47g/t Au (75-77m)
	35	36	1	0.235			
	40	41	1	0.150			
	72	73	1	0.111			
	73	74	1	0.464			
	74	75	1	0.142			
	75	76	1	6.504			
	76	77	1	2.446			
NGGRC1111	77	78	1	0.338			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	99	100	1	0.129			
	100	101	1	0.208			
	101	102	1	0.288			
	102	103	1	3.014			2m @ 2.05g/t Au (102-104m)
	103	104	1	1.076			
	104	105	1	0.134			
	105	106	1	0.563			
	106	107	1	1.493			7m @ 2.94g/t Au (106-113m) incl. 1m @ 14.3g/t Au (108-109m)
	107	108	1	0.311			
	108	109	1	16.097	12.493	14.295	
	109	110	1	2.452			
	110	111	1	0.859			
	111	112	1	0.707			
	112	113	1	0.494			
	113	114	1	0.32			and
	114	115	1	0.182			
	115	116	1	0.081			
	116	117	1	0.03			
	117	118	1	0.042			
	118	119	1	0.012			
	119	120	1	1.87	1.332	1.601	5m @ 2.56g/t Au (119-124m)
	120	121	1	3.541			
	121	122	1	0.423			
	122	123	1	4.095			
	123	124	1	3.136			
	124	125	1	0.413			
	125	126	1	0.141			
	126	127	1	0.127			
	127	128	1	0.132			
NGGRC1112 Lydia Central	28	32	4	0.221			
	32	36	4	0.611	0.589	0.6	
	36	40	4	0.228			
	40	44	4	0.135			
	73	74	1	1.184			
	76	77	1	0.156			
	85	86	1	0.835			
	86	87	1	0.436			
	87	88	1	0.180			
	88	89	1	0.373			
	89	90	1	0.07			
	90	91	1	1.934			7m @ 8.56g/t Au

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
91	91	92	1	14.940	17.321	16.130	(90-97m) incl. 6m @ 9.58g/t Au (91-97m) incl. 1m @ 16.13g/t Au (91-92m)
	92	93	1	4.856			
	93	94	1	6.884	6.914	6.899	
	94	95	1	14.458	12.016	13.237	
	95	96	1	6.819			
	96	97	1	10.767	9.326	10.047	
	97	98	1	0.129			
NGGRC1114	32	33	1	0.120			
NGGRC1115 Lydia	0	44	4	0.126			
	108	112	4	0.126			
	120	121	1	0.120			
	124	125	1	0.160			
	127	128	1	0.147			
	128	129	1	0.289			
	130	131	1	0.184			
NGGDD1144	71.95	72.3	0.35	11.116			4m @ 11.73g/t Au (71.95-76.1m) incl. 0.9m @ 30.84g/t Au (73.1-74m)
	72.3	73.1	0.8	7.664			
	73.1	74	0.9	25.952	35.726	30.839	
	74	75	1	9.266			
	75	76.1	1.1	1.526			
	76.1	77	0.9	0.164			
	77	77.4	0.4	0.178			
	89	89.7	0.7	9.494			
	89.7	90.88	1.18	18.725			
	90.88	92	1.12	0.702			
	92	93	1	6.784			9.1m @ 10.33 g/t Au (89-98.1m) incl. 1m @ 24.64 g/t Au (94-95m)
	93	94	1	11.013			
	94	95	1	25.226	24.066	24.646	
	95	96	1	7.593			
	96	97	1	4.928			
	97	98.1	1.1	8.603			
	98.1	98.8	0.7	0.852			
	98.8	99.4	0.6	5.365			2.7m @ 2.58g/t Au (98.8-102m)
	99.9	101	1.1	3.831			
	101	101.4	0.4	3.854			
	101.4	102	0.6	2.262			
102	103	1	0.698				
103	104	1	0.631				
104	105	1	4.405				4m @ 3.28g/t Au (104-108m)
105	106	1	0.792				
106	107	1	2.512				

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
NGGDD1144	107	108	1	5.428			
	108	109	1	0.178			
	109	110	1	2.186			
	110	111	1	0.776			
	111	112	1	0.508			
NGGDD1145	99	99.9	0.9	0.14			
	107	108	1	1.02			
	108	109	1	1.82			
	109	109.35	0.35	3.9			
	109.35	110	0.65	0.33			
	110	111	1	0.3			
	114	115	1	0.1			
	115.55	116.07	0.52	0.14			
	116.07	117	0.93	0.2			
	118	119	1	0.17			
	119	120	1	0.46			
	120	121	1	0.48			
	121.7	122.6	0.9	0.74			
	122.6	123	0.4	0.42			
	123	123.6	0.6	4.6			
	123.6	124	0.4	9.36			
	124	124.9	0.9	2.35			
NGGDD1151	124.9	126	1.1	0.44			
	126	127	1	0.16			
	109	110	1	0.28			
NGGSRC1301 Lydia South	116	117	1	0.14			
	117	118	1	0.2			
	118	119	1	0.25			
	52	56	4	0.26			
NGGSRC1302	72	76	4	0.37			
	44	48	4	0.2			
	48	52	4	1.22			8m @ 1.19g/t Au (48-56m)
NGGSRC1307	52	56	4	1.16			
	48	52	4	1.17			12m @ 5.57g/t Au (48-60m)
	52	56	4	14.6			
	56	60	4	0.95			
NGGSRC1308	48	52	4	0.26			
	52	56	4	0.41			
	56	60	4	0.19			
	64	68	4	0.29			
NGGSRC1309	20	24	4	1.64			8m @ 9.18g/t Au

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	24	28	4	16.7			(20-28m)
	28	32	4	0.28			
	56	60	4	0.29			
NGGSRC1310	28	32	4	0.89			
NGGSRC1311	40	44	4	0.15			
NGGSRC1312	36	40	4	1.72			4m @ 1.72g/t Au
	40	44	4	0.14			(36-40m)
NGGSRC1313	36	40	4	0.1			
	40	44	4	8.62			4m @ 8.62g/t Au
	44	48	4	0.32			(40-44m)
NGGSRC1318	64	68	4	55			
NGGSRC1320	32	36	4	0.12			
NGGSRC1322	24	28	4	0.48			
NGGSRC1323	20	24	4	0.1			
NGGSRC1324 Lydia East	0	4	4	1.05			8m @ 1.64g/t Au
	4	8	4	2.44			(0-8m)
	8	12	4	0.63			
	12	16	4	0.16			
	20	24	4	0.21			
NGGSRC1325 Lydia East	0	4	4	0.18			
	8	12	4	0.11			
	36	40	4	0.28			
NGGSRC1326 Lydia East	12	16	4	3.16			16m @ 1.77g/t Au
	16	20	4	0.93			(12-28)
	20	24	4	1.79			
	24	28	4	1.2			
	28	32	4	0.15			
	32	36	4	0.28			
NGGSRC1327 Lydia East	13	14	1	0.24			
	14	15	1	0.36			
	15	16	1	0.12			
	16	17	1	0.3			
	18	19	1	0.32			
	19	20	1	0.47			
	20	21	1	1.7			12m @ 3.19g/t Au
	21	22	1	0.58			(20-32m)
	22	23	1	1.71			Incl.
	23	24	1	8.17			1m @ 8.17g/t Au
	24	25	1	6.8			(23-24m)
NGGSRC1327 Lydia East	25	26	1	2.76			
	26	27	1	4.76			

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	27	28	1	2			
	28	29	1	1.7			
	29	30	1	2.18			
	30	31	1	4.43			
	31	32	1	1.52			
	32	33	1	0.54			
	34	35	1	0.95			
	36	37	1	0.17			
	37	38	1	0.19			
	48	51	3	0.45			

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1. Sampling Techniques and Data *(Criteria in this section apply to all succeeding sections.)*

Criteria	JORC Code Explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> RC sample was collected and split in even metre intervals where sample was dry. Wet sample was speared or on occasion sampled by scooping. RC drill chips from each metre were examined visually and logged by the geologist. Evidence of alteration or the presence of mineralisation was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Vanta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Drilling technique was a Reverse Circulation (RC) with a hammer diameter of 5.5" (130mm) using a truck mounted 660 Schramm drill rig with a 1350cfm/500psi onboard Sullair compressor.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Wet sample recovery was lower, estimated to an average of 40%. Samples were collected and dry sample split using a riffle splitter.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> Based on the relatively small number of assays received to date, there is no evidence of either a recovery/grade relationship or of sample bias.
<i>Logging</i>	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> RC chips are logged visually by qualified geologists. Lithology, and where possible structures, textures, colours, alteration types and minerals estimates are recorded. Representative chips are retained in chip trays for each meter interval drilled. The entire length of each drill hole is logged and evaluated.
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> RC samples were collected and dry sample split using a riffle splitter. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Sample submitted to the laboratory comprised three spear samples in different directions into the material for each meter interval. The samples were sent to Intertek labs in Perth for Au analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are well-established standard industry best practice techniques. Drill chips are dried and crushed and pulverised (whole sample) to 95% of the sample passing -75µm grind size. Field QC procedures include using certified reference materials as assay standards at every 20m. One duplicate sample is submitted for every 20 samples and a blank at 50 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and re-assaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. NMG Ltd. uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures.

Criteria	JORC Code Explanation	Commentary
		Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate sampling procedures practiced by NMG Ltd.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The programme included no twin holes. Data is collected and recorded initially on hand-written logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
<i>Location of data points</i>	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> Drill hole locations have been established using a differential GPS with an accuracy of $\pm 0.3\text{m}$. Regular surveys were undertaken every 18m using a Gyro survey tool. The map project MGA2020, Zone 50.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Drill hole collars were located and oriented to deliver maximum relevant geological information to allow the geological model being tested to be assessed effectively. This is still early-stage exploration and is not sufficiently advanced for this to be applicable. Various composite sampling was applied depending on the geology of the hole. All anomalous sample intervals are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled on one meter intervals.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> This exploration drilling program was designed to infill the previous drilling along the main Lydia Shear Zone. All the current drill holes within this area have been drilled 110 degrees east/south-easterly at -60 degrees dip. Sufficient data has been collected and compiled to be able to establish true widths, orientation of lithologies, relationships between lithologies and the nature of any structural controls as three diamond holes have been drilled. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced.
<i>Sample security</i>	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> Internal reviews are carried out regularly as a matter of policy. All assay results are considered representative as both the duplicates, standards and blanks from this programme have returned satisfactory replicated results.

Section 2. Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The Garden Gully project comprises of twenty-one granted exploration licenses E51/1737, E51/1661, E51/1708, E51/1609, E51/1790, E51/1791, E51/2150, E51/1709, E51/1888, E51/1924, E51/1936, E51/1963, E51/1989, E51/2002, E51/2012, E51/2013, E51/2014, E51/2015, E51/1932, E51/1972, E51/1973 and five mining leases M51/390, M51/567, M51/886 M51/889 and M51/926, totaling approximately 677km². NMG Limited holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> First workings in the Garden Gully area: 1895 - 1901 with the Crown Gold Mine. 264 tonnes gold at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra Gold Mine (1909 – 1917): 18,790 oz gold from quartz veins in “strongly sheared, decomposed, sericite rich country rock”. Seltrust explored for copper and zinc from 1977, reporting stratigraphically controlled “gossanous” rock from chip sampling and drilling. In 1988, Dominion gold exploration at Crown defined a >100ppb gold soil anomaly. RAB to 32m: “no significant mineralisation”: drilling was “sub-parallel to the dip of mineralisation”; best intersection: 15m at 2.38g/t from 5m. 1989 at Lydia: Julia Mines RAB drill holes 30 m intervals 100m apart across the shear zone targeting the arsenic anomaly. 12m at 5.16 g/t Au from 18m; 6m at 3.04 g/t Au from 18m. No samples deeper than 24m due to poor recovery, so open at depth in the prospective shear zone. Julia also drilled shallow air core at Crown mine, returned best intersection of 2m at 0.4g/t Au from 34m in quartz veins in felsic volcanics. In 1989, Matlock Mining explored North Granite Well and Nineteenth Hole; best result 8m at 2.1 g/t Au. Supergene zone: grades to 3.17 g/t Au and still open. 1993 – 2003: St Barbara Mines: RAB, RC on E51/1661. Gold associated with black shale (best: 1m at 0.64 g/t). In 1996, Australian Gold Resources RAB and RC drilling found Cu, Zn and Ag anomalies (up to 1800ppm Cu, 1650ppm Zn and 3.8 g/t Ag) associated with saprolitic clay and black shales at 60-80m deep on current E51/1661. 2001-2002, Gamen (Bellissimo & Red Bluff Noms) trenched, sampled, mapped and RC drilled at Crown. Results (up to 0.19 g/t Au) suggest the presence of gold mineralisation further to the east of Crown Gold Mine.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> 2008 – 2009: Accent defined targets N and S of Nineteenth Hole from satellite imagery and airborne magnetics.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The Garden Gully project comprises now most of the Abbotts Greenstone Belt; comprised of Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. Au in the Southernmost tenements (E51/1989, E51/2002 E51/1936) have a similar orogenic depositional style to the rest of the Garden Gully Prospects but is hosted within the Meekatharra-Wydgee greenstone belt. The area is characterized by the Norrie group and the Meekatharra Formation (part of the Poelle Group). The Norrie Group comprises of thick successions of pillowed and massive tholeiitic basalts and conformably overlying felsic volcanics with interbedded Banded Iron Formations and felsic rocks of the Yaloginda Formation. The Meekatharra formation is composed of weakly metamorphosed basalt, komatic basalt and other ultramafic rocks. The Au is associated with the Burnakura Shear Zone which is again typical of a brittle to semi-ductile shear zone which would form semi-continuous dilatational veins. The local Burnakura Mine (under care and maintenance by Monument) is located approximately 3km away from Ora's tenements and features mineralization dominated by steeply dipping quartz (\pmminor sulphides) veins orientated parallel to the foliation of the fault zone. Mineralisation in the West Caledonian tenements (E51/1709 and E51/2013) can be shown in the Kohinoor open pit mine. This is an isolated gold mine and features Au mineralisation located on the contact between banded iron formations and meta basalts and associated with steep SW plunging ore shoots which are structurally controlled by shear zone orientated NW-SE. within this mine there is a high association with sulphides (pyrite and pyrrhotite) and quartz veining which runs parallel to the shear zones. Much of the tenement is largely untested greenstone belt. The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited

Criteria	JORC Code Explanation	Commentary
		to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
<i>Drill hole Information</i>	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> All relevant drill hole details are presented in Table 1. The principal geologic conclusion of the work reported from this programme at the Lydia Gold Prospect confirms the presence of high-grade gold mineralization in what are interpreted to be steep plunging shoots. Extensive primary gold mineralization was also intercepted below the base of oxidation; primary mineralization associated with sulphides, mainly pyrite and arsenopyrite, which offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
<i>Data aggregation methods</i>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> All significant drill intercepts are displayed in Figures 2-8. Full assay data over 0.1g/t Au are included in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example, 75m to 77m in NGGRC1111 is reported as 2m at 4.47g/t Au. This comprised 2 samples, each of 1m, calculated as follows: $[(1*6.504) + (1*2.446)] = [8.950/2] = 4.47\text{g/t Au}$. No metal equivalent values are used.
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> Sufficient geological data has been collected to allow the geometry of mineralization to be interpreted. True widths are unknown and insufficient information is available yet to permit interpretation of geometry. Reported interceptions are downhole intercepts and are noted as such.
<i>Diagrams</i>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Relevant location maps and figures are included in the body of this announcement (Figures 1-8). Sufficient data have been collected to allow a meaningful cross-section to be drawn with confidence (Figures 3- 4 and 7).

Criteria	JORC Code Explanation	Commentary
<i>Balanced reporting</i>	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> This announcement includes the results of 45 RC drill holes and three diamond holes. The reporting is comprehensive and thus by definition balanced.
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the programme. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programs.
<i>Further work</i>	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Additional deeper RC drilling will be undertaken between along the Lydia South Shear Zone to test the potential for high grade gold and the link between these two mineralized structures. More diamond drilling will be undertaken to better define the structural setting of the mineralized systems.